Digital Logic Circuit Design: Boolean Simplification, Decoders, and Multiplexers
Boolean Simplification using K-Map
Step 1: Identify Terms
The given expression includes:
- ABCD
- AB’CD
- ABCD’
- ABC’D
- ABD’
Step 2: K-map Setup
We’ll set up a 4-variable K-map for A, B, C, D.
K-map Layout
CD\AB | 00 | 01 | 11 | 10
-------|----|----|----|----
00 | 0 | 0 | 0 | 0
01 | 0 | 1 | 1 | 1
11 | 0 | 1 | 1 | 1
10 | 0 | 1 | 1 | 0
Step 3: Filling the K-map
Now, we fill in the K-map based on the minterms:
- For ABCD (1111): Cell (1, 1) = 1
- For AB’CD (1011): Cell (1, 0) = 1
- For ABCD’ (1110): Cell (0, 1) = 1
- For ABC’D (1101): Cell (1, 0) = 1
- For ABD’ (1100): Cell (0, 0) = 1
Step 4: Grouping
Group the 1’s:
- Group 1: A large rectangle covering cells (1, 0) (includes ABCD, AB’CD, ABCD’, ABC’D) gives AB.
- Group 2: A single cell (0, 0) for ABD’.
Step 5: Simplified Expression
The simplified expression is: Y = AB + ABD’
Step 6: Further Simplification
Y = AB(1 + D’) = AB
4-to-16 Decoder using 3-to-8 Decoders
Overview
A 4-to-16 decoder activates one of 16 outputs based on a 4-bit input.
Design Steps
- Inputs: A3, A2, A1, A0
- Outputs: Y0 to Y15
- 1-to-2 Decoder: Use A3 to enable one of two 3-to-8 decoders.
- 3-to-8 Decoders: Use A2, A1, A0 to select outputs.
3-Bit Binary to Gray Code Converter
Gray Code Basics
Gray code values differ by one bit.
- G2 = B2
- G1 = B2 ⊕ B1
- G0 = B1 ⊕ B0
Logic Circuit Design
Use XOR gates for conversion.
Canonical SOP using 8:1 Multiplexer
Implementation
Use A, B, C as select lines and set data inputs based on minterms.
Data Inputs
- D0 = 1
- D1 = 1
- D2 = 0
- D3 = 1
- D4 = 1
- D5 = 0
- D6 = 0
- D7 = 1