Factoring Polynomials: Methods and Techniques

Topic: Factoring Polynomials

Factoring is the process of expressing a polynomial as a product of its factors. Several factorization methods exist, each applying to specific polynomial forms.

Factoring Methods

  • Greatest Common Factor
  • Difference of Squares
  • Quadratic Trinomials: x2 + bx + c
  • Quadratic Trinomials: ax2 + bx + c
  • Sum or Difference of Cubes
  • Factoring by Grouping

A. Greatest Common Factor

Important Definitions

Numerical Factors

Factors of a number are all the numbers that, when multiplied together, result in that number.

Example: Factors of 24:
1 x 24 = 24
2 x 12 = 24
3 x 8 = 24
4 x 6 = 24

Factors of a Term

A factor is each number or variable within a term.

Example: In the term -4x4y9z2, the factors are -4, x4, y9, and z2.

There are two types of factors in a term:

  1. The numerical factor (a number) is called the coefficient.
  2. The literal factors are the variables (x4, y9, z2).

Example: The coefficient of -4x4y9z2 is -4.

Greatest Common Factor (GCF)

The GCF of terms in a polynomial includes:

  • The greatest common factor of the numerical coefficients.
  • The lowest power of any common variables.

Examples:

  • y + 7 = Not factorable (no common factors)
  • 5x – 10 = 5(x – 2)
  • p5 + 7p3 – 9p2 = p2(p3 + 7p – 9)
  • 12x5 – 18x8 + 24x10 = 6x5(2 – 3x3 + 4x5)
  • 36x7y3 – 27x6y5 + 81x4y8 = 9x4y3(4x3 – 3x2y2 + 9y5)
  • (x + 3)3 + (x + 3)2 = (x + 3)2[(x + 3) + 1]
  • 35(p – 6)8 – 50(p – 6)12 = 5(p – 6)8[7 – 10(p – 6)4]
  • 48a7b2(w + z)6 – 36a6b5(w + z)4 = 12a6b2(w + z)4[4a(w + z)2 – 3b3]

Practice: Factor if possible.

  • 6x + 3y =
  • 12x + 8y =
  • 6x2 – 14x =
  • 15x2 – 6x =
  • 28y2 + 4y =
  • 42y2 + 6y =
  • 20xy – 15x =
  • 12x3 + 10x2 =
  • 18a-4b7 – 27a3b8 =
  • 42y6z5 + 21y11z9 =
  • 6z + 9z2 – 15z3 =
  • 63w15 – 36w9 + 81w5 =
  • 18x5y9z2 – 27x3y7z4 + 45x2y6z8 =
  • 36p2q8z9 + 18p4q7z3 – 24p13q10z4 =
  • 5(a – 6)3 – (a – 6) =
  • w3(w + 3)5 + w7(w + 3)6 =
  • t(t + 1)7 + 4(t + 1)12 =
  • 80m3(t – 4)8 + 18m5(t – 4)6 =
  • 3(x – z) – z(z – x) =
  • p(c – 7) + 5(7 – c) =

B. Difference of Squares

This factorization method applies to a binomial that is a difference of two perfect squares.

Example: Finding squares:
(4)2 = 16
(-9)2 = 81
(r)2 = r2
(t4)2 = t8
(-7p8)2 = 49p16

Definition: Conjugate binomials differ only in the sign of the second term.

Examples: Conjugates:
(w – 4) → (w + 4)
(x + 5) → (x – 5)
(2p + z) → (2p – z)

Important Note: Multiplying conjugate binomials results in a difference of squares. Factoring a difference of squares results in conjugate binomials.

Examples:

  • p2 – 4 = (p + 2)(p – 2)
  • 16 – m2 = (4 – m)(4 + m)
  • 25t2 – 64q2 = (5t + 8q)(5t – 8q)
  • 144x6 – 1 = (12x3 + 1)(12x3 – 1)
  • y4 – 1 = (y2 + 1)(y2 – 1) = (y2 + 1)(y + 1)(y – 1)

Practice: Factor.

  • t2 – 1 =
  • w2 – 100 =
  • y8 – 64 =
  • q2 – 49 =
  • 4b6 – 9 =
  • 1 + f2 =
  • 4t2 – y2 =
  • d2 – 36g2 =
  • 81 – h10 =
  • 9 – 25c2 =
  • k4 – 64j2 =
  • p2 + q2 =
  • 144 – m14 =
  • 49n2 – 121 =
  • b2 – 4c2 =
  • 25g8 – 144h20 =
  • 36 – 121s16 =
  • 49 + y4 =
  • y2 – z4 =
  • 64d2 – 9k14 =
  • 169 – b10 =
  • 100 + 36p2 =
  • (3 + u)6 – (t + 4)10 =
  • (w – 4)2 – (t + 9)2 =
  • (d – 8)8 – (c – 6)10 =

C. Factoring Quadratic Trinomials: x2 + bx + c

Factoring is the reverse of multiplication. To factor a quadratic trinomial, find two binomials that multiply to give x2 + bx + c.

Example: (x + 3)(x + 5) = x2 + 8x + 15

Procedure:

  1. Find all factors of c.
  2. If c is positive, choose factors that add up to b. Both factors have the same sign as b.
  3. If c is negative, choose factors that subtract to give |b|. The larger factor has the same sign as b.

Examples:

  • x2 + 7x + 12 = (x + 3)(x + 4)
  • x2 – 9x + 18 = (x – 3)(x – 6)
  • y2 + 6y – 27 = (y + 9)(y – 3)
  • z2 – 4z – 45 = (z – 9)(z + 5)

Practice: Factor.

  • w2 – w – 2 =
  • c2 – 10c + 25 =
  • t2 + 8t + 12 =
  • x2 – 4x – 12 =
  • y2 + 8y – 9 =
  • d2 + 10d + 24 =
  • x2 + 12x + 20 =
  • a2 – a – 30 =
  • y2 + y – 72 =
  • y2 + 12y + 36 =
  • w2 – w – 12 =
  • d2 + 9d – 10 =
  • r2 – 15r + 54 =
  • f2 + 7f + 12 =
  • y2 + 12y – 45 =
  • x2 + 9x + 20 =
  • w2 – 11w + 28 =
  • q2 + 5q – 14 =
  • s2 – 8s + 12 =
  • z2 – 3z – 54 =
  • a2 + 8a – 24 =
  • a2 – 14xy – 63y2 =
  • a2 – ab – 56b2 =
  • y2 + 21y + 98 =
  • x2 + 9x + 12 =
  • 6 + 5x – x2 =
  • c2 – 9c – 10 =
  • d2 + 3d – 54 =
  • x4 – 5x2 – 36 =
  • t4 + 6t2 + 9 =

D. Quadratic Trinomials: ax2 + bx + c

Use similar criteria as factoring x2 + bx + c.

Procedure:

ax2 + bx + c = ( _ x + _ )( _ x + _ )

  • The product of the first terms must be a.
  • The sum of the outer and inner products must be b.
  • The product of the last terms must be c.

Example:

5x2 + 11x + 2 = (5x + 1)(x + 2)

Practice: Factor.

Many examples and practice problems were provided in the original document. These have been omitted for brevity.

E. Factoring Sums or Differences of Cubes

This method is used for binomials that are sums or differences of two perfect cubes.

a3 + b3 = (a + b)(a2 – ab + b2)
a3 – b3 = (a – b)(a2 + ab + b2)

Important Note:

  • To find the cube root of a number, find the number that, when multiplied by itself three times, equals the given number.
  • To find the cube root of a variable with an exponent, divide the exponent by 3.

Examples:

  • x3 + 8 = (x + 2)(x2 – 2x + 4)
  • 27 – y6 = (3 – y2)(9 + 3y2 + y4)
  • 8p9 + 64 = (2p3 + 4)(4p6 – 8p3 + 16)

Practice: Factor.

Many examples and practice problems were provided in the original document. These have been omitted for brevity.

F. Factoring by Grouping

This method is used when other methods are not applicable, typically for polynomials with four terms.

Procedure:

  1. Group terms with common factors using the associative property.
  2. Factor each resulting binomial.
  3. Factor again using the GCF. The terms in the parentheses must be identical.

Examples:

  • x3 + 2x2 + 3x + 6 = (x + 2)(x2 + 3)
  • 3x3 + 6x2 + 2x + 4 = (x + 2)(3x2 + 2)
  • 4p4 – 12p2 – 3p2 + 9 = (p2 – 3)(4p2 – 3)

Practice: Factor.

Many examples and practice problems were provided in the original document. These have been omitted for brevity.

dXyOM2KGQohvi3JDio + + VnlEAADs = NgWiWIZ1QiyeXmYifRCmfcJGip62tbpiRolusJRavoKG7t6QEuWK1chpfrb0epoiwAc67Wzm9ULipyceExMYpwBHWzJ3GwdVZRpZ0Ps3K37PVUl3kpefnwuzbnergQcfv2LP2
160LvCco3WbZs03RluFedlLn643RqI3hW47rzQmBCvMP8LyM + vD1EAADs =
yAYhGRpntSIruyptnBcvXLtYR8tXrb56hJg59dDCYWiou9GEWAGTCXAeYGmjkPCDVkLaKOpSiFgSErHZbClcggUzMr2Wx2sILgAfOs + + dRQKbhOHuxLCcwDFvzoJAVYAY8mgztDSfcAWXxIE2z6ur0He3Vt5FGgTY7Gg6BLq5TQGw5wI66Dycwz1OxUNBo4IDDQwNsEfQIGXWBGEUWuhjAgAOw == w80qAwEJQ35KgYMuYgEKAgQBC1IeY4yOkCE6C4sCAAwBB5EVmYycnhY6pwGbQXpXG4VXqnkjPDxrE06Wq6C3j1e
kLFomO1jCKjQ5v1uS0Pv32 + n9zI0tzTI1ECAwECBAEFfx + DhYeJKk4GBgcACISUihSSlJYBmCRumgkTBxcyHBkgBqMSpVempkgTCJ6kAQqZs7Wtt1tqtrgTAoW5AKXBEsMCRk0VCwEEFJfFz9ET077NFAk9h6w5qLHb3QHf2Us2DAYBCMV5E + rsSnjS0AAEBAXQAgu5hNH49BHg14YJA0IIGADQp + CTooPsFDJ0GMiOOy3iLmqJAAA7
3KY89SMAgQAO3Cle2GYykFw0FeQESNeXsAfUtFCQEIFAQBCkoaGRSHiROLIlQUC3ociwlGmQebTpcTBwFyFAZfK6WnE6lZMROHb3gBoEGzHAW2sGYACqahnUHArRKcQzxFAhYMKI8YMcvNyWSRfqDGMH8ACdg1PYsCAAwIBcwCCMM04uTm6JPWEwuLA + Pdttow9AH2EoeCnqQBMxBGBAA7
yAYhGRpntSIruyptnBcvXLtYR8tXrb56hJg59dDCYWiou9GEWAGTCXAeYGmjkPCDVkLaKOpSiFgSErHZbClcggUzMr2Wx2sILgAfOs + + dRQKbhOHuxLCcwDFvzoJAVYAY8mgztDSfcAWXxIE2z6ur0He3Vt5FGgTY7Gg6BLq5TQGw5wI66Dycwz1OxUNBo4IDDQwNsEfQIGXWBGEUWuhjAgAOw == w80qAwEJQ35KgYMuYgEKAgQBC1IeY4yOkCE6C4sCAAwBB5EVmYycnhY6pwGbQXpXG4VXqnkjPDxrE06Wq6C3j1e
Ycy2IOKRx6WitgpHU0alSSqc4rKVlbUa + IeoxnGWJOGOS2AQ1M91lZZss +4 LV9RE +7 oy1BA8CWYABgnRTUU93WmVVa40MCQA7
== czu5K07EsCQNhDYUZ7xcs5UyFgOEAOCACCdbBhymWrhLFkcBaMJgFQ0BRk7wsTCOLQRFYyjrAczBJBBY3MxljAwh8SwUEdHkwDR4xB2IECgIVGJA5E4IhOQlPAQiFclYwZxoLdAJaCmkzCXhXnxMMAaZihC0FqRsmMW8TB7iRkBoCbJM2MVqOJWQsvxQMBjUxSQaOBwMBnSRakIePGwXTAYPFKGKR4FibN5LmHhEAOw
TwRADs =
xWfTzCAeYrACvLl4REKAcPhczAmAVXe7UZAJAihhDUp1gYpCgRCNMheAe0xjiJbBKagw6Dnm + n5FhhnE1ULIgmBV4iAIjIGAQwGCAEFYBNSiUCYjCEyYgwKWJOWf5lNHIIUpZwjdDIMAXsABa5AtEy4KrUTCjANeKY0v7s9nDdiQR2ocjvLuzePwD23ySPLfcGZN70GhAECMdg0zIA8sOBPsqdv2YF9AmIJDJ3iM + + jkRADs = Ss7Pnt
JQOmOM1ANcfCBnwTtBUNy6wwIdqx00bWEgtTHgiPOOjgFFHpEwwbqgQEbgIEBi709vgvyB0TsmzIB4BTAAYK3qUwiFChJWE9IvqDKJFHBAA7
WAoisFonmiqAuXqvicWtnBtSzRN6XcP8zif8AUMSgSDy4BQKRgGB5MBcRkCplVWkVY4aJiTRCILIigOC7DPjFYbdxNGowAgjBUfcsUQYFivfTN5Ew0UAno4RQSBVot + ghVFOHiRRQqUVpd5MpEjAQubH3wLDF4JAj2jpQGnJpJ1UaEVVAt0fAGoOx2IALS2F7mQIAhuFkB6DQEDN8jKiTySBo + + OcUHLULYOCGQAmLCp4DomADqAkFLtCpwIAgAAEJlvWoWBCjxnkfGcZsCLbhw4KGCh76OBkg5Yxrf2J6gilTZgQAOw == yuoa8K3qHJS1kkgTT1BNelTfj1cYWIAKFE8W8SW6slbsf8DsJ5Cwf6xQN
WAojsFonmiqAuXqvicWtnBtSzRN6XcP8zif8AUMSgSDAKEwMvCQSqbvwDHgijQBQlIISD + IC0XL9frCm63lQ1NfQVCdm1V0GebUCrAeSIAUVHUsfj0LFQhWO2wgYYYVBVtijAGOQxIDkTJ6HwcMAXMSCFKSFJ2flhMHBDEVCxgEDKUKFjyuF7AgHZoioqwfAk4BsRIKArRwwcNDA5V0pCwiXasADXPPj0qWqop0ayKBVx0g4EMIDTMtgjiEbOp97bojA8a56SOuoMch + EMH7PXQKBBQYGjBEhHPBhY8WO4cwmvUMNwhoaOBxHw35pmAiKpjDHUeA1FFAAA7
WAoisFonmiqAuXqvicWtnBtSzRN6XcP8zif8AUMTgSZAUVAKBhAh8KlgBBGDdMqrshLZAiUweDyEWAzWhsiMBAABF6w5aNDJEzkimLhRowZPQw8AU9zFTpeCXIgeRQLFAeNNRduFjpANGsYbYxFh4A3XgUTBAEKGXQfCAtYoIeeOw09B1htCAajI54CY7KvJrczHZISvIQMBzEiZq6WJglpPQReAXeWkrAAC5jZBApDCqMHggxuLY3ZAASFO7AI30LblQBjuc4sJg3w7SEHjxPRtgz7dYRYnnScCFbw50iJDUHJLDTbgo9CgQJuBBSIuITSB0EaJnzVWDMgmcYAAVkQ09ZKwbxrMiaM2cBxpBRCG4UN2XljJc + fFSIAADs =
w2TCwmwJ1qKzh9Kex5xCAPjVGAAA7
lO8Db5pPnlM4A0RbNzM8g8y5P2DnkFa8LJiwgFiyghIG6AAokqAOYwoMMzd1IRyGVqDykUGH0pMkDjk0bSjFKLEORUgJGJlEqOglpmqk0BVhacikRyKwAAvrMEXlnVEafM27m1OJHZKtrq7QgCHAglp2lTa1AdTrjg1KmVDUh2coVXdevMiIAADs =