Hypothesis Testing and Confidence Intervals

Confidence Intervals and Hypothesis Tests

1. Key Terms

  • Confidence Interval (CI): A range of values likely to contain the population parameter.
  • Margin of Error (E): The amount added and subtracted from the sample mean to form the CI.
  • Critical Value (tα/2): Value from the t or z distribution for the desired confidence level.
  • Degrees of Freedom (df): Number of independent values; df = n – 1 for t-tests.
  • Standard Error (SE): Variability measure of the sample mean; SE = s / √n (s = sample standard deviation, n = sample size).
  • P-value: Probability of a result as extreme as observed, assuming the null hypothesis is true.
  • Test Statistic (t or z): Computed value to determine hypothesis test outcome.

2. Confidence Intervals

  • For t-distribution (σ unknown): CI = x̄ ± (tα/2 × SE)
  • For z-distribution (σ known): CI = x̄ ± (zα/2 × SE)
  • TI-84:
    • t-interval: STAT → TESTS → TInterval
    • z-interval: STAT → TESTS → ZInterval

3. Hypothesis Testing

  • 1-Sample t-Test (Population Mean):
    • Null: H0: μ = μ0
    • Alternative: H1: μ ≠ μ0
    • Test Statistic (t): t = (x̄ – μ0) / (s / √n)
    • TI-84: STAT → TESTS → TTest
  • Paired t-Test:
    • Null: H0: μd = 0 (no difference)
    • Alternative: H1: μd ≠ 0
    • TI-84: STAT → TESTS → TTest, select “Paired”
  • 2-Sample t-Test:
    • Null: H0: μ1 = μ2
    • Alternative: H1: μ1 ≠ μ2
    • TI-84: STAT → TESTS → 2-SampTTest
  • 1-Proportion z-Test:
    • Null: H0: p = p0
    • Alternative: H1: pp0
    • Test Statistic (z): z = (p̂ – p0) / √[(p0(1 – p0)) / n]
    • TI-84: STAT → TESTS → 1-PropZTest

4. General Steps for Hypothesis Testing

  1. State Hypotheses: Define null (H0) and alternative (H1).
  2. Set Significance Level (α): Common values are 0.05, 0.01.
  3. Compute Test Statistic (t or z).
  4. Find P-value or Critical Value.
  5. Make a Decision:
    • Reject H0 if p-value ≤ α or test statistic exceeds critical value.
    • Fail to reject H0 if p-value > α.

5. Additional Formulas

  • Margin of Error (E): E = tα/2 × (s / √n) or E = zα/2 × (s / √n)
  • Standard Error (SE): SE = s / √n

6. Examples

(Examples 1-5 from original document, rewritten for brevity and clarity, would be included here)