Industrial Automation and Manufacturing Processes

Automation Concept: PSAM

Science that deals with a process of replacing the human operator with mechanical or electronic devices.

It is a mechanism that works in whole or in parts of its own.

Industrial Automation

Is the use of systems or components, mainly computers, to control machinery and/or industrial processes, to replace human operators.

Advantages of Automation

  • Improves quality of product.
  • Gets a cost reduction.
  • Reduction in the process time.
  • Flexibility to adapt to new products.
  • Reduction of pollution and environmental damage.
  • Rationalization and efficient use of energy and raw materials.
  • Increased plant safety and worker protection.

Profitability of Automation

  • Incremental Evolution of Automation
  • Investment
    • Studies
    • Realization
    • Fine tuning
    • Financial expenses
  • Direct Gains
    • Savings from labor, materials, energy.
    • Suppression of defective parts and returns.

Automated Machines

  • Automated Machines:
  • They perform a task or work automatically.
    • Specific Design Machines
    • Commercial Machines

Examples: Machine tools, Industrial Robots, Packaging Machinery, Bottlers

  • Automated machines for transport, Automated storage machines
  • Rolling mill

Industrial Robots

Every day, more and more integrated in the industry.

An industrial robot means a material handler which is automatically reprogrammable and multifunctional with three or more axles (DOF).

They can position and orient material, parts, tools, or special devices for carrying out odd jobs at different stages of industrial production, either in a fixed position or moving.

  • Different tasks:
    • Different processes: welding, drilling, etc.
    • Loading machine tools
    • Assembly of parts
    • Etc.

End-Effectors

Fasteners

  • Tweezers
  • Servo‐controlled on‐off or
  • Opening parallel, circular, etc.
  • 2, 3, … Fingering
  • Suction Cups Electromagnets
  • Hooks

Applications of Industrial Robots

Installation of Car Glass, Spot Welding, Arc Welding, Laser Cutting.

Flexible Manufacturing Systems

A flexible manufacturing system (FMS) consists of an integrated group of computer-controlled machines.

The elements of this system are very flexible and versatile, allowing a very diversified product manufacturing.

Allows the system easily adaptable to changes in product manufacture and production levels.

Flexible Cells

  • Simulators for flexible manufacturing systems
    • Cell Dimension
    • Productivity and performance
    • Behavior changes
    • Demand Breakdowns
    • Product Changes
    • Testing strategies
    • Detecting bottlenecks and deadlocks

Process Plants

A process plant is a kind of factory that transforms materials by mass/volume through the process equipment.

  • Examples: chemical plants, refineries, cement, paper mills.

Process Control of Plants

It requires a specific control systems and instrumentation.

Material Flows in a Factory: Material Management

Each manufacturing process receives a stream of input materials and produces another outflow of materials.

These materials can be:

  • Raw materials (e.g. flour)
  • Items for manufacturing (e.g. machine oil)
  • Intermediate products (e.g. boxes)
  • Finished products (e.g. canned biscuits)
  • Waste (e.g. cardboard cutout)

Operations

Major operations related to the flow of materials:

  • Identification
  • Transport
  • Storage
  • Selection

The techniques and components used are very different for the materials mass handled and for the materials handled discreetly.

Identification

When mixed different materials being transported or stored, it is necessary to identify each.

Even if all materials are equal, their identification may be required for quality control.

Main identification systems:

  • Systems based on barcodes
  • RFID‐based systems

Radio Frequency Identification (RFID)

The RFID tags communicate with readers via radio frequency signals.

There are several standards, which differ by the frequency of work, such information is encrypted, tag types, etc.

RFID Tags

  • Basic Components
    • Chip
    • Antenna
  • Information memory
    • Read Only
    • Reading and Writing
  • Power Supply
    • Active tags: They use batteries
    • Passive tags: They get their energy from the RF signal emitted by the reader
    • Battery‐assisted passive tags: They use both sources of energy

RFID Comments

Because of its low cost, the most commonly used tags are passive.

In the passive tags, the maximum distance between the reader and the tag depending on size of the antennas (the reader and tag).

Internal Transport

Major automated transport means for discrete objects:

  • Belts, chains and automated roller paths
  • Automated systems with lanes
    • Surface
    • High level
  • Automatic guided vehicles (AGVs)
  • They usually allow objects to be carried by various alternative routes

Planning and Control

There are multiple software applications to plan and control the flow of materials.

  • Applications for specific problems (e.g. an automated warehouse management)
  • MRP (Material Requirements Planning). It is used to manage inventory of materials and production planning in a factory.
  • MRP II (Manufacturing Resources Planning). It is used to plan all the resources necessary for manufacturing.

Manufacturing Processes

  • Forming Processes
    • Extrusion
    • Lamination
    • Drawing
    • Folding
    • Embossing
  • Machining processes
    • Turning
    • Milling
    • Drilling
    • Reaming
    • Hobbing
    • Grinding

Forming Processes: Extrusion

  • Manufacturing process based on giving a predetermined form to a material by pushing or by extracting it through a die of a desired cross section. Create complex sections and work materials that are brittle, because the material is only subjected to compressive forces and shear.
  • Usage and Applications: Process used to create objects with fixed and predefined cross-section. Different lengths can be achieved.
  • Process Parameters
    • Working Pressure
    • Material Temperature
    • Displacement
  • Application Examples
    • Aluminum profiled parts
    • Construction Beams

Forming Processes: Lamination

  • Manufacturing process based on the volumetric deformation of the worked material which reduces the initial thickness of the piece/work material by the compressive forces exerted by the two rollers. The rollers rotate in opposite directions with respect to the material flowing between them. The compressive forces and shear are caused by the friction that occurs between the rollers and the metal.
  • Usage and Applications: Process used to create laminar objects with fixed cross-section. Different lengths can be achieved.
  • Process Parameters
    • Material Temperature
    • Working Pressure
    • Displacement speed
  • Application Examples
    • Construction Beams
    • Steel profiles

Forming Processes: Drawing

  • Manufacturing process by which a material (usually metal) undergoes a compressive load between two molds. The load can be provided by a gradually applied pressure or by percussion, by means of presses and hammers. The molds are coupled steel dies or matrices, one moving by a sliding guide and the other fixed.
  • Usage and Applications: Process used to confer volumetric complex geometry to materials in laminar shape.
  • Process Parameters
    • Material Temperature
    • Working Pressure
  • Application Examples
    • Chassis Elements
    • Sheet metal parts

Forming Processes: Folding

  • Manufacturing process without separation of material for metal sheets. The sheet metal is conferred the desired shape by plastic deformation.
  • Usage and Applications: Process used for (mostly) metal sheet elements shaping by bending.
  • Process Parameters
    • Working Pressure
    • Material Thickness
  • Application Examples
    • Chassis Elements
    • Sheet metal parts

Forming Processes: Embossing

  • The embossing is a mechanical operation by which, by using special tools that are suitable for metal cutting, you separate portions of metal from the others to give a particular shape.
  • Usage and Applications: Process used to create laminar objects with complex geometry.
  • Process Parameters
    • Working Pressure
    • Material Thickness
  • Application Examples
    • Sheet metal parts

Machining Processes: Turning/Lathing

  • Concept: Manufacturing process based on metal chip removal by means of a blade or a tool which moves longitudinally while the workpiece rotates. Useful to generate revolution shapes.
  • Usage and Applications: Process used to create volumetric revolution surface objects.
  • Process Parameters:
    • Cutting speed
    • Depth of cut
    • Advance
  • Application Examples:
    • Driveshafts
    • Mechanical components with revolution shape.

Machining Processes: Milling

  • Manufacturing process based on the cutting of the material being machined by means of a rotary tool with several cutting edges. The rotary cutting tool executes programmed moves over the work table, where it is fixed the part to be machined, in all the three possible axes.
  • Usage and Applications: Process used to create volumetric objects with orthogonal surfaces.
  • Process Parameters
    • Cutting speed
    • Depth of cut
    • Advance
  • Application Examples
    • Valve blocks
    • Transmission housings

Machining Processes: Drilling

  • Manufacturing Process based on metal chip removal. It creates holes through cutting edge tools called helical drills.
  • Usage and Applications: Process used to create blind holes, empty sections and deep cavities in volumetric objects.
  • Process Parameters
    • Cutting speed
    • Advance
  • Application Examples
    • Valve blocks
    • Transmission housings

Machining Processes: Reaming

  • Manufacturing process based on metal removal to obtain a spiral shape (left or right) on an outer circular surface (screw) or into a circular hole (nut).
  • Usage and Applications: Process used to create threaded surfaces both internal and external.
  • Process Parameters
    • Cutting speed
    • Advance
    • Pace
  • Application Examples
    • Screws
    • Nuts

Machining Processes: Hobbing

  • Manufacturing process based on metal removal to obtain toothed and grooved surfaces by means of a rolling movement between workpiece and tool.
  • Usage and Applications: Process used to obtain toothed and grooved surfaces
  • Process parameters
    • Cutting speed
    • Advance
    • Depth of cut
    • Pressure Angle
  • Application Examples
    • Gears
    • Grooved axes

Machining Processes: Grinding

  • Manufacturing process based on metal removal for surface finishing
  • Usage and Applications: Surface finishing
  • Process Parameters
    • Cutting speed
    • Advance
    • Depth of cut
  • Application example
    • Gears
  • Surface finishing processes
    • Grinding
    • Hobbing
    • Lapping
    • Polishing
  • Element bonding processes
    • Welding
    • Assembly (interference, screwing, riveting)
    • Glueing
  • Thermal Processes
    • Cementation
    • Induction
    • Nitriding
    • Phosphating
  • Finishing processes: painting and packaging

Surface Finishing Processes: Grinding

  • Concept: Manufacturing process used to achieve precision machining for both dimensions and surface finishing, by using robust abrasive discs, called teeth.
  • Usage and Applications: Process used to perfect interior or exterior surfaces of hardened parts.
  • Process parameters
    • Cutting speed
    • Advance
    • Depth of cut
  • Application examples
    • Cylinder rod

Surface Finishing Processes: Hobbing

  • Concept: Manufacturing process used to achieve precision machined surface finish and elimination of residual stresses by means of applying pressure through a point contact hydrostatically supported ball.
  • Usage and Applications: Process used to hone internal or external surfaces of hardened parts, reducing surface tension.
  • Process parameters
    • Cutting speed
    • Advance
    • Working Pressure
  • Application examples
    • Bearings

Surface Finishing Processes: Lapping

  • Concept: Machining manufacturing process in which two surfaces are rubbed with a very abrasive grain in order to improve the finish and decrease the surface roughness.
  • Usage and Applications: Process used to perfect interior or exterior surfaces of hardened parts reducing and eliminating roughness microcracks.
  • Process parameters
    • Cutting speed
    • Advance
    • Working Pressure
  • Application examples
    • Valve sliders

Surface Finishing Processes: Polishing

  • Mechanical manufacturing process which is performed on the surface of various materials to improve their visual appearance, feel and functionality. It consists of fine lapping by means of grinders to strip the metal from any type of roughness and of a final friction with wipes with abrasives. The resultant brightness is achieved by the compression and the closing of the pores of the metal surface.
  • Usage and Applications: Process used to perfect surfaces eliminating surface irregularities and imperfections.
  • Process parameters
    • Cutting speed
    • Working Pressure
  • Application examples
    • Ceramic and marble

Element Bonding Processes: Assembly

  • Concept: Manufacturing process based on the joining and linking of several individual components in a logical sequence of steps to obtain a composite assembly.
  • Usage and Applications: Process used for the manufacturing of composite components by screw connection or by interference from single starting components.
  • Process parameters
    • Torque
    • Interference pressure
  • Application examples
    • Motors

Element Bonding Processes: Glueing

  • Concept: Manufacturing process based on the bonding of materials by the action of an adhesive which after crystallization is able to confer a certain level of tension.
  • Usage and Applications: Process used to manufacture composite components from the adhesion of individual components.
  • Process parameters
    • Temperature
    • Humidity
    • Interference pressure
  • Application examples
    • PVC Conduits

Thermal Processes: Cementation

  • Thermochemical treatment process applied to steel parts. The process provides carbon to the surface by diffusion, thus changing its composition.
  • Usage and Applications: Process which aims to harden the surface of a workpiece without modifying its core, resulting in a piece made of two materials: the core steel (low carbon) tough and resistant to fatigue, and the hardened surface (steel with higher carbon concentration.
  • Process parameters
    • Temperature
    • Time
    • % Carbon
  • Application examples
    • Cementation is applied to all those parts that must have high impact resistance and toughness, together with high resistance to wear, as is the case of the pinions, cams, shafts, etc.

Thermal Processes: Induction

  • Concept: Tempering process consisting in exposing the steel to an alternating magnetic field, which penetrates and heat the surface.
  • Usage and Applications: Process aimed to harden the surface of a piece, allowing to profile different hardening depth along the length of the piece.
  • Process parameters
    • Current
    • Frequency
    • Coolant flow
  • Application examples
    • Bearings and shafts.

Thermal Processes: Nitriding

  • Thermochemical treatment that is given to steel. The process adds nitrogen to the steel composition by heating. The result is an increase in the surface hardness of the parts. It also increases the resistance to corrosion and fatigue.
  • Usage and Applications: It is applied to parts that are subject to regular large friction forces and loads. These applications require that the parts have a certain plasticity core that absorbs shock and vibration, and an area of great hardness that resists friction and wear.
  • Process parameters
    • Temperature
    • Gases
    • Time
  • Application examples
    • Bearing races and cylinder liners

Thermal Processes: Phosphating

  • Concept: Phosphating process or Phosphation is a passivation of a metal surface.
  • Usage and Applications: Phosphate coatings are used in metal parts and in steel to prevent corrosion, to improve lubrication forming processes or embossing, or as a base for subsequent coatings or painting.
  • Process parameters
    • Chemical solution for immersing the material.
    • Time
  • Application examples
    • Wire drawing and rods.

Sustainable Development: Factors

  • A number of factors require a new consideration of economic development. The most important elements can be considered:
    • World population growth reaching 7 billions people (10/31/11) and constantly upward;
    • The consequent growth of manufactured (industrial production has grown 100 times from 1900) as well of consumed goods (fossil fuel consumption has grown 50 times from 1900);
    • The finiteness of stocks of many essential natural resources;
    • The global nature of the problem of long term development sustainability.

Sustainable Development: Approaches

The problem of the definition of a new lifestyle taking care of the real constraints coming from population growth:

  • From the right of everybody to a fair availability of resources and
  • From the finite nature of them,

Can be coped by means of two approaches:

  • One essentially based on a reduction of consumed goods
  • One based on a continuing growth, although based on a detailed design consideration of sustainability

Sustainable Development: Concept

The concept of sustainable development has been defined by the United Nation’s World Commission on Environment and Development as:

“Development as meets the needs of the present without compromising the ability of future generations to meets their own needs.”

Sustainable Development: Some Ideas

The motivation to proceed to a sustainable development is clearly depicted in the concept of development as essential and constitutive element of freedom.

Although it is clear that this objective can only be achieved governing and supporting virtuous and goal appropriate behaviors.

  • Amartya Sen affirms in his book Development as Freedom:

    “ Development can be seen, it is argued here, as a process of expanding the real freedom that people enjoy. Focusing on human freedoms contrasts with narrower views of development such as identifying development with the growth of gross national product, or with the rise in personal incomes, or with technological advance or with social modernization. Growth of GNP or individual incomes can of course be very important as means to expanding the freedom by the members of the society……”

  • Garrett Hardin told in his 1968 article “ The Tragedy of the Commons”:

    “A society that permitted perfect freedom of action in activities that adversely influenced common properties was eventually doomed to failure…..”

Environmental Impact: Introduction

Environmental Impact is given by the potential consequences of every action in term of natural resource and energy consumption, generated or accidentally released in air, water, ground waste, or in general in term of alteration of overall environment conditions.

Environmental Impact can be global, regional or local on the basis of the dimension of territory involved.

The environmental impact from a time standpoint can be short or long term.

  • The actions capable of inducing an environmental impact must be carefully examined all over the entire life cycle of the product/process:
    • The extraction and processing of natural resources (raw materials)
    • Product/process manufacturing/setup,
    • Usage
    • The management of the end of life, including recycling/reuse and disposal.

Evaluation

  • The main indexes to be evaluated in order to estimate the environmental impact are:
    • Resource related impact = f (rate of consumption, rate of renewal, stock recovery infrastructure)
    • Pollution‐related impact = f (fate, risk)
    • Global Warming Potential express as the quotient of the global warming effect of the considered material and those on an equal mass of carbon dioxide

Graedel and Allenby have attempted to represent by means of an equation the whole environmental impact with the formula:

Environmental impact = Population x GDP per capita x environmental impact/GDP

  • Where the overall environmental impact is related to:
    • Overall population
    • Each people material living standard, expressed by the by per capita/GDP (Gross Domestic Product);
    • The environmental efficiency of our society and technology, expressed as the quotient between the total environmental impact and the total economical activity.

Factors

  • It is apparent that there are three major control factors to manage in order to keep within acceptable limits the environmental impact:
    • The growth of the population, already under control in many countries
    • The gross domestic product which must be better distributed within the population
    • An eco‐efficiency coefficient which essentially depends on the behavior of the industry
  • The first two points are object of socio economical studies and of specific political actions, the third is dealing with the behavior of the industry, in particular with the sustainable design, because the characteristics of sustainability along the whole life cycle of a product/service are determined in the design phase.

Solutions

  • The industry can play an important role in order to contain the environmental impact defining an operational context for product design and in general the definition of eco‐efficient industrial systems.
  • The optimization focus is on:
    • The flow energy and of the recycling of materials
    • On the minimization of the elements and actions with negative environmental impact.

The duty of the industry is to proceed in the development in a sustainable way, i.e. minimizing the environmental impact.

  • Globalization offers great opportunities to our economy in order to achieve a sustainable development.
  • Environmental impact in fact does not respect geographical borders. It is, on the contrary, important the role played by industrial companies that can enforce the adherence to the principles of sustainable development, thus improving the environmental impact conditions.

Sustainable Design: Chief Elements

  • The chief elements to be paid attention are:
    • Natural resource consumption for which must be implemented recovery and recycling procedures
    • Wise usage of non renewable energy sources and in any case the limitation of energy consumption;
    • The pollution containment either in the usage phase of products and in their manufacturing processes;
    • The lowering of non processable waste;
    • In general reuse of components, materials etc. in order to achieve a saving of natural resources through a reconditioning not involving an excessive energy consumption.

Sustainable Design: LCE (Life Cycle Engineering)

In this reference frame the activities of the engineers deal with the application of scientific and technological principles, starting from design and for the entire life cycle of the product, with the objective of environment conservation and natural resource preservation, fostering at the same time the economical progress and environmental sustainability, optimizing the product fruition along the full cycle of the life of the product, while minimizing pollution and waste.

The ensemble of these activity is defined as Life Cycle Engineering (LCE).

DFE (Design for Environment) actions develop mainly in four areas:

  • The design of the product and of its usage patterns;
  • The design of production process;
  • Design aspects involved by material choices;
  • Energy consumption design.
  • In each case the means necessary to achieve the objectives are:
    • The usage of clean energy technologies in order to limit the pollution during the usage phase and the production phase;
    • The modularity of the design of the parts and of the components to ease disassembly and consequently recovery and reuse;
    • The easy segregation of materials in order to make recycling easier.

Sustainable Design: Factors

Actually, the simultaneous optimization of all the performance measures asked to a project is not possible, in general, it is therefore necessary to find a compromise between the needs of all the stakeholders.

Sustainable Design: Methodologies

In order to cope with those aspects, a number of design methodologies have been developed:

  • “ Design for…” which are condensed in the form Design for X or DFX
  • The most significant are:
    • DFA= Design for Assembly
    • DFM = Design for Manufacture
    • DFMA = Design for Manufacture and Assembly
    • DFE = Design for Environment
    • DFD = Design for Disassembly
    • DFReman = Design for Remanufacture
    • DFR = Design for Recycling

Sustainable Design: LCA (Life Cycle Assessment)

As evaluation of the life cycle of the product Life Cycle Assessment (LCA) we mean the capability to evaluate the product with regard to the performance indicators identified as relevant (environmental impact, costs, product availability, possibility of recovery/reuse etc.)

Along all the supply and value chain.

Sustainable Design

The decision difficulties can be overcome thanks to the availability of analysis tools like the DFX, which allow to analyze either the operation choice connected to the specified objectives that allow to specify the operation choices linked to each specific goal, and to assess the alternative solutions.

The following two tables show the design process with respect to the traditional scheme of the simultaneous engineering (design of product/production process) and by respect to the same principles, but extending to the proper elements pertaining to environmental impact, referring, by the way, to the whole lifecycle of the product.

Sustainable Design: Stages

  • Project
  • Conceptual Development
  • System level design
  • Detailed Design
  • Test and final design
  • Production Launch

Decision Models

In order to be able to proceed to operate according to 
the previously described logical schemes, it is 
necessary to have defined tools to measure the 
indicators to be estimated during the whole lifecycle of 
the product including the factors related to the 
environmental impact. 
 Moreover it is of fundamental importance to be able to 
choose between alternative hypotheses which are often 
not clearly explicit.

Every decision is taken on the basis of available information. The 
key elements of a decision models are:
 the definition of the decision objective;
 the definition of possible alternatives;
 the facts outside of the decision maker control reach;
 the level of knowledge of the fact outside of  the decision maker 
control reach
 the exit

The decision model can be: 
 deterministic models for which the result is known with 
probability 1;
 risk models for which many facts are known with probability 
lower than 1;
 uncertain models for which are possible more than two 
outputs.
 Moreover there are decisions which are taken in order 
to maximize their objective.


A methodology suitable to build a decision structure is given, first,  by the 
drawing of a tree identifying the evaluation criteria of the design assumed of 
the same level of importance  and subdividing the relative weight , with total 
sum 1. Then it builds a decision matrix where columns represent:
 the list of the evaluation criteria as they are represented by the tree;
 the weights of the evaluation criteria;
 the measure units of the metrics of the evaluation criteria;
 For each option examined and for every evaluation criteria, respectively the 
metric value, the corresponding score in the merit scale and the rating, i.e. 
the position in a general ranking, obtained by multiplying the score by the 
weight factor.  The total rating identify the superior option.

 In order to operate well balanced decisions between 
different designs and design stages it is utterly important 
that each of them is evaluated according to the same 
methodologies and metrics.
 This result is achieved by means of the introduction of 
standards. As regards the environmental impact, the series 
ISO 14000 norms define the procedure to correctly measure 
the different aspects involved.

The LCA (Life Cycle Assessment) in a method used to  evaluate the aspect of a potential environmental  impact of a product/service during its life cycle by  means of:
 the build up of an inventory of the most relevant inputs and  outputs of the whole system product/production  process/use/reuse/recycling;
 the evaluation of the environmental impact associated to  every input and output;
 the inventory data analysis and the interpretation of the  results of the environmental impact related to the objectives  of the design.

 The LCA method is useful to:
 identify the opportunity
 to improve the environmental 
aspects of as product services in one or more stages of its life 
cycle;
 support the decisions during the design of products or 
processes;
 select the most relevant indicators of environmental 
performances

The LCA tool has on the other end some limits, the most 
important are: 
 the subjective nature of the boundaries of the system and of 
the identification of inputs and outputs;
 the fact that it is impossible to summarize the results of an 
LCA analysis with a single score or number.


Summary
 In summary the typical stages of the design process when including the  environmental aspects are:
 Planning →design ideas
At this stage the key environmental impact elements are identified. They must be  evaluated also with reference to behaviour of the products under consideration;
 Conceptual design →high level design
At this stage the measurable elements related to environmental performance are  identified. They must be evaluated also with reference to the reference products;
 Detailed design →final design
At this stage the principles and the measures previously identified;
 Building of  prototypes and testing →Prototype
In this stage, specifications are verified and prototype LCA is revised;
 Production and market launch →Product
In this stage, a document including all the environmental considered aspects is produced.
 The process here sketched is an iterative process and includes the following  phases of product revision during which the aspects of environmental impact  identified during the product usage will be considered.

Actually the whole design will be conditioned by the prior strategic 
choice to privilege one or more objective, with the clear consciousness 
of the fact that all objectives cannot be achieved simultaneously
 The design strategic objectives can be:
 better efficiency in material usage;
 better efficiency in energy usage;
 selection of clean technologies either in the production process and in the 
accomplishment of the product functions;
 design of durable product with specific care for maintainability of products 
and recovery of component;
 design for functional optimization;
 design for reuse and recycling;
 design for eliminating dangerous chemicals and materials.


Trends in Manufacturing Automation                                                 TRENDS
!  Focus on «internalities»: shop-floor effectiveness
!  Fixed automation in manufacturing for enhanced productivity
!  Mass production – economy of scale – top-down planning
!  «scientific» work-organisation – off-process optimisation
! “Market-provision sensitive” enterprise strategy «optimal» setting to be
revised, because:
!  market-saturation of mass-products
!  social rejection of repetitive work-cycles
!  availability of robot technologies

Market-driven enterprise strategy (profit from outside)
! Flexible automation in manufacturing for customers’ satisfaction
!  Product mix – economy of scope – bottom-up planning
!  «intelligent» work-organisation – on-process adaptivity
!  Robot: task-oriented equipment with programmed job-allotment and
appropriate autonomy due to environment «intelligence»
!  Robot facility: job-shop (in lieu of flow-shop) of multi-purpose cells fed by
adaptive dispatching (AGV, etc.) and handling

Product mix: depending on the technological «versatility», obtained:
!  on-line (functional redundancy and autonomy);
!  off-line (modularity and facility up-dating)
!  Economy of scope: obtained through:
!  value-chain assessment,
!  facility setting to «agility or quick-response» and «leanness or dropping
un essential redundancies»
!  Bottom-up planning: market-driven exploitation of the strategic, tactical and
execution flexibility

New Manufacturing Organisations

! economy of scope: – to diversify the offer’s quality – to suppress redundancies
– to grant operation effectiveness – to concentrate functions
!  co-operative knowledge processing: lean engineering check-up assessment:
!  product-service innovation elimination of set-apart resources
!  super-models and competencies sharing just-in-time planning
!  lifecycle design by simultaneous engineering team-work empowerment
!  piece-wise continuous improvement: on-duty diagnostics and proactive servicing:
!  life-extension management trend monitoring maintenance
!  backward cycle exploration recovery-flexibility exploitation
!  shared responsibility break-up quality-driven ambient intelligence

 
«externalities» vs. «internalities» in manufacturing enterprises:
• first step (2P) :
– simultaneous engineering :joint product-process design
• second step (2P2E) :
– integrated product-process-environment-enterprise design
Towards the knowledge entrepreneurship, aiming at value-chain in intangibles
and virtual organisation approach in the management of the integrated (direct
and inverse) logistics

 Environment-driven enterprise strategy (ecology-constrained)
! Provision of «extended artefacts» by «extended enterprises»
!  artefact: any object made by man with skill, especially with a view of
subsequent use
!  extended artefact: any provision joining manufactured commodities and
enabling utilities – also: product-service
!  The «extended enterprises» supplying «extended artefacts» represent a turn in
the manufacturing organisations, when profit orientation encompasses the
delivery lifecycle «externalities», with provision of lifelong and withdrawal
«services» for the «products» usability


PROCESS PLANTS

A process plant is a kind of factory that transforms 
materials by mass ,throughout the plant.
 Examples:
 Cement Production
 Steel  Production
 Aliminium Production

Process Flow Diagrams  Diagrams used to represent process main flows

P&I Diagrams: Process & Instrumentation Diagrams   Diagrams used to represent Process units & Instrumentation.

Legend used to describe equipments  Legend used to describe equipments

PAINT PRODUCTION

Introduction
 The paint production plant is a process plant in the chemical sector.
 Solvents, pigments and resins  are used as raw material. 
 The process operations  are performed  in chemical environments  and  
dosage, reaction, solution are typical  processes.
 Automated machinery is used for  dosing, dissolving, scattering 
processes.
 The processes require  safety systems specific to the chemical industry.
 this type of processes use  specific instrumentation and controllers , such 
as temperature, level, pH sensors and load cells …
 It employs redundant communications at the field level, cell and system.

Raw Materials
The paint has 3 components:
 Solvent: it regulates the viscosity of the product. Examples: isocyanate, acetate.
 Pigments:  they add color, brightness and are added in powder form and constitute 
the only solid component of the mixture:
 Resin: it  is the “medium” which is necessary to bind all raw materials, that is 
acting as “glue” them all.

Examples of pigments:
 Iron oxide pigments:  adds  red color tones
 Chromium pigments: bring shades of green or yellow.
 Cobalt Pigments: bring shades of blue.
 Pigments Carbon black shades provide.

Manufacturing Process
 There are two sets of important processes:
 Resin manufacturing processes
 Paint manufacturing process
 The resins may come as intermediate products from 
other vendors.
 In turn, the resin is an intermediate product for 
other manufacturers

Part I: Resin Manufacturing Processes
 It is a chemical process in which components  go into 
reaction in a tank
 The reagents are added in liquid form to the tank but the 
resulting chemical process solidifies them.
 It is a process where temperature control is essential: the 
mixture of reagents should be performed at a temperature 
appropriate to the type of resin.
 Example: Epoxy Resin:
 A mixture of epichlorohydrin and bisphenol‐a.
 Used on layers of primer to prevent corrosion and improve paint 
adhesion.
 The resin production facilities must be insulated and heat 
traced to prevent crystallization due to low temperatures


Part II: Resin Manufacturing Processes
 It can be divided into 3 processes:
 Dosage: raw materials are mixed in the dosing tanks before 
being sent to reactor.
 Reaction: resin production
 Dissolution: the resin is mixed with solvents to provide the 
final characteristics
 Once the resin has been manufactured, it is sent to 
filling machines or other plants for manufacturing 
paints

Resin Manufacturing Processes
1.‐ DOSIFICATION

2.‐ REACTION

3.‐ DISSOLVING

Paint Production Process
 It can be divided into 4 processes:
 Pre-mix: 100% blend of pigments and a certain% of resins and
solvents.
 Dispersion: You can homogenize the mixture. Machines are used
to disperse and recirculate it in the completed tank.
 Completed / mix: Completion with other resins and solvents.
 Filtration: The resultant paint is filtered before being sent to the
filling

Production Process
1.‐ PRE‐MIX

2.- DISPERSION* & COMPLETION:

3.‐ FILTERING (TRANSFER TO FILLING)

Automated machines
 Dispersion machines (mills)
 Enable more fine mix of components.
Consisting of a tank with a shaft and toothed discs.
 Inside the tank gets the molturante: a few small areas
responsible for the dispersion.
 Usually built in zirconium.
 For each recipe there is a paint dispersion time
(machine time dispersion) or other measure of energy
(kw.hr).

 
Mixing machines
 They allow the mixing of the components
 They are tanks that incorporate different types of
agitators in terms of product needs.
 Some types:
 Portable Agitators
 Wall type Agitators are installed to tank wall & subject to mix from the
wall and allow different sizes of tanks
 Rubber Agitators: for small buckets of paint, are powered by compressed
air (are manual)
 Agitators incorporated into tanks: integrated into the mixing tanks
themselves, usually accompanied by variable frequency drives to allow
for different speeds of agitation

Safety Systems
 Safety in chemical plants is directly related to production: 
working in potentially explosive atmospheres.
 This implies that all elements of plant must have safety 
certifications for explosive environment.
 Example: distribution panels, sensors, actuators, etc.. They 
must be certified as EX.
 Ex means explosion proof.
 There are levels and zones for ex‐proof concept in 
standards.

 Other safety measures include grounding of equipment for 
discharging.
 Usually grounding verification systems exist.
 It is programmed in automatic interlocking system and 
operates interlock when the grounding is cleared.

 Grounding Clamp
 Grounding connection verification systems


Controllers and Communications
 Automatic  control systems allow the process is done  automatically
 Based on a structure that includes:
 Device Level :  Process sensors and actuators. Examples:
 Temperature sensors,  for the reactor in production of resins.
 Pressure Sensor, the transfer of water between tanks, controlling the  pressure is enough / not excessive
 Load cells to know quantity of product dosed.
 Solenoid Controlled  Valves to allow the addition of materials, control  valves, tank bottom, and so on.

The communication structure is based on redundant systems for all
critical processes (reaction in production of resins, for example)
 There have been reports at different levels:
 Field Level: Direct control of field devices. Generally distributed periphery.
Example: ET-200M from Siemens, flex IO from AB.
 Area and Cell Level: PLCs for process control. They are responsible for
running the production sequence. They can run a particular recipe selected by
the operator, a shift between origin / destination selected, etc.. Example:
Siemens S7-400, AB Controllogix, etc..
 System Level : In the control room SCADA will be found that works as an
interface between operator and plant. In certain installations also interferes
with the process through field operator panels

Quality Control
• For the product obtained:
• Samples from finished product tanks are taken to the laboratory.
• Samples are evaluated in the laboratory are evaluated.
• Controls are performed according to some standards.
• Painting tests are performed:
• Tests are done using the final product patterns.
• It checks the properties of the product finish and painted.

Storage and Transportation
 The packaging is made directly at the outlet of the
completed tank.
 The dosage and packaging process is performed with the
aid of a metering valve and a conveyor controlled by a
PLC.
 Production batches can be stored in both manual and
automated warehouses awaiting distribution.
 Conventional means of distribution and transportation are
used.


FOOD SECTOR

Elaboration, processing, preparation, preservation and 
packaging of food.
 Processes: 
 Storage: silos, warehouses, cold rooms, …
 Extraction: pulp, bone, or liquids. Shredding, crushing, heat, 
drying and filtering.
 Preparation: cooking, baking, fermentation, …
 Conservation: pasteurization, sterilization, refrigeration.
 Packing

The production processes in the food sector are very varied. 
They are characterized by necessary strict hygienic 
measures.

DAIRY PRODUCT

Introduction
 The raw material of dairy industry is milk.
 Restriction: manipulate milk below 7 ° C, less than 3 days storage.
 Specific processes: skimming, pasteurization, homogenization.
 Products:
 Liquid or powdered milk.
 Cheese.
 Yoghurt.

RAW MATERIALS: RAW MILK
 Collection:
 Automatic milking
 Cold Tank
 Quality control before discharge
 The fat content varies (for example according to the season) 
but the dairy industry standardizes the fat content by 
homogenization.
 The milk collection should be filtered and cooled as quickly 
as possible.

ELABORATION

HIGIENIZACIÓN
DESNATADO
UPERISACIÓN (UHT)
HOMOGENIZACIÓN
ENVASADO ASÉPTICO 
Y CODIFICACIÓN
EMPAQUETADO Y 
PALETIZACIÓN

Obtaining raw materials
MILKING:
 Milk is obtained via milker by Mechanically and 
automatically, so that the milk is subjected to cooling almost 
immediately, keeping a temperature of 4 º C.
 All milk produced is collected in a storage tank in which the 
product is kept at refrigerator temperatures.
 Tank passes refrigerated tankers, through which is 
transported to the processing plant.

Processes
 SANITATION: Mild heat process applied to milk, to 
minimize microbiological content and enabling certain 
forms of resistance (spores) that will go to vegetative form, 
facilitating its subsequent disposal in the UHT process.

SKIMMING:
Separation of fat in  milk , skim and cream by 
centrifugation of milk.
The milk is “normalized” by adjusting the% of MG by type 
(skimmed, semi, whole).

Processes: Heat Treatments

Pasteurization: Pasteurization is the thermal process 
carried out to milk in order to eliminate pathogens it may 
contain. The aim of heat treatment is the sterilization of 
milk by altering the least possible physical structure, 
chemical components and sensory properties, taste and 
quality, of this. After the operation of pasteurization, milk 
is rapidly cooled and hermetically sealed food security 
purposes.

HOMOGENIZATION:
 Another common process is the homogenization. 
Homogenized milk is that which has been treated to break 
the fat globules and reducing its size. By this treatment, the 
smaller fat globules are dispersed evenly in the milk, 
preventing the formation of a layer of cream on the surface of 
whole milk. It also has a higher digestibility, pleasant taste 
and a whiter color, bright and attractive. However, it also has 
certain drawbacks, since it can promote the development of 
rancid flavor.

Packaging:
 The containers are pre‐sterilized.
 Are filled in the chain and closed tightly.
 The packaging is done mechanically and continuously

Storage and Distribution
 Storage:
 Pasteurized milk, cheese, yogurt, etc … should be stored at 
temperatures below 6 º C.
Sterilized or UHT milk, the main risk is the loss of tightness 
during storage.
 Distribution:
 Trucks are refrigerated for pasteurized milk and fresh dairy 
products.
Sterilized and UHT milks do not require cold.

Health and Safety
 Maintaining a high level of personal hygiene.
 Impervious surfaces, easy to clean and disinfect (stainless 
steel).
 Rooms keeping temperatures below 15 º C.
 Maintain scrupulous hygiene of premises and warehouses.
 All equipments are subject to automatic cleaning processes 
are strictly controlled.
 CIP process is commonly applied
 CIP: Cleaning In Place

MANUFACTURING OF BISCUITS

 Introduction
 Biscuit: a type of cake made of flour, sugar and sometimes eggs, butter 
and various jams, which, when divided into small pieces and molded or 
shaped in various forms, then baked.
 Main Ingredients: Flour and sugar as raw materials.
 Other components: butter, eggs, nuts, chocolate, jam, ….
 Types:
 Sweets: commodities breakfast (47% by volume), specialties (32%) and “healthy.”
 Salted.

 Introduction
 Production Process: The wide variety of products has led to many 
different production processes.


Raw Materials
The cookies contain as basic raw materials:
 Flour: All traditional crackers usually made from wheat flour, without large 
amount of bran and may have added small amounts of other flours or starches, 
flavors or to get special structural properties.
 Sugar: sugar crystals or liquid.
 Eggs: in liquid or powder.
 Butter and fats: Fats are used both vegetable and animal origin. They are used in 
the mass (anticaking mission and functions of texture), in cream fillings and 
covers and chocolate (to provide good flavor).
The different varieties of biscuits give rise to the use of many other products: 
chocolates, nuts, jams, fruit …

Other components:
 Emulsifiers: substances whose function is to stabilize 
mixtures of two immiscible liquids like oil and water. (Eg, 
lecithin).
 Yeast: For the fermentation of the dough (Saccharomyces
cerevisiae).
 Enzymes: Amylases and proteases.
 Flavors and flavor enhancers: Vegetable oils, synthetic 
substances, spices and dried herbs and ground, dried and 
chopped nuts. Among flavor enhancers include common 
salt.
 Dyes: Natural dyes are less stable and give a less intense 
color

Processes of Biscuit Maufacturing
KNEADING: 
 Mix all necessary ingredients for the elaboration of a biscui

MOULDING:
The molding technique is used to obtain two biscuits cut 
from a mold in which the mass is deposited and later 
retrieve it with the desired shape.

EXTRUSION: 
 process for the production of biscuits based on introducing a mass 
for a mold with the desired shape and come to his court with the 
extent required.

ROLLING: The rolling process is one that leads to obtaining 
a “blanket” thin and compact mass that will allow us to 
perform the punching of different cookies.
DIES CUT: Once you have a damp compacted to the extent 
required, the sheet punching is necessary to obtain the 
cookies are baking

COOKING: 
 Biscuit baking. Time and temperature is 
monitored .
 The furnaces in biscuits production lines are of 
the tunnel, to make a continuous cooking.

DECORATION: 
 This is an optional process.
 In this part of the process is added to the biscuit 
items such as powdered sugar, chocolate, 
sprinkled with oil.
 There are plenty of decoration processes due to 
the large number of different products on the 
market

COOLING: 
 It is necessary before packaging
 Transporting the cookies into the air, or
 Forced ventilation.

STACK AND PACKAGING:
 Stack: placement of cookies for later packaging.
 Stack by star
 Stack by loss of speed conveyors


Automated Machinery
 Dough Mixers
 Mixers with removable troughs: The blades of the
mixer are introduced into the trough for the Dough.
Leaving these once completed
 Horizontal Mixers: Based on a fixed machine in which
the ingredients are introduced and pivots to empty. No
need troughs
 Vertical Mixers

Ovens
 Direct: burning inside a chamber where the product
passes.
 Indirect combustion outside the chamber, the air does
not mix with product.
Cyclothermic: combustion outside the chamber, air is
mixed with the cookies (clean fuels)
 Electrical: electric heaters

Safety Systems
 In the production of products intended for human 
consumption is necessary to meet hygiene requirements 
and safety for operators, facilities and production process.
 Chemical and Biological Contamination of Raw Materials
 Contamination of products due to the constructive nature of 
the machine


Automotive Industry 
 It is one of the most developed 
industries 
 In addition to the companies 
manufacturing automobiles, there 
are many ancillary businesses that 
manufacture components 
 The complexity of the auto 
manufacturing also leads the 
existence of multiple companies 
that offer goods and services related 
to manufacturing processes

Component Manufacturing 
 Most companies  tend to  manufacture automotive  components by subsidiary  companies
 Some elements, such as motor and  sheet metal parts that form the  body of the vehicle, are usually  produced by the same company that  makes the car, though not always in  the same factories that produce  vehicles
 The complexity of some  components implies the existence  of specialized factories, which in  turn use components produced by  other subsidiary companies

Component Manufacturing :
Sheet metal parts

 Sheet metal parts that form the body of the vehicle (doors, roof, 
hood, etc.).

Component Manufacturing :
ENGINE GLASSES SEATS TYRES
 Main sections of a car factory:
 Manufacturing area of the 
vehicle body
 Paint Area
 Component mounting area
 In some cases, in the same 
factory also produced:
 Sheet metal parts (ex. Doors)
 Engines
 Other components

Automobile Manufacturing:
Vehicle Body

 Metal parts are assembled to form  the body of the vehicle
 It is a highly automated process
 The positioning and welding the  pieces usually made with industrial  robots
 It is essential that the final  geometry of the body is within very  strict tolerances

Automobile Manufacturing:
Painting

 The painting area is usually an isolated 
area of the factory, because it requires 
special environmental conditions
 The body before painting, receiving a 
impregnations to protect them from 
corrosion and provide a basis for 
painting. Usually carried out by 
immersion.
 The paint is usually performed by 
industrial robots
 The painting process ends in an ovenAutomobile Manufacturing:
Installation of Components  Before mounting the stage doors are removed  for better access into the vehicle and to facilitate  the assembly of the other elements of the  doors.The doors are reassembled at the end of  the line 
 The assembly of most components is not  automated, and is done manually, but using  special tools that facilitate the operator’s job 
 Each vehicle is custom, and therefore operations  each operator has to make are not always the  same  The drive system (engine, gearbox, axles, brakes,  etc..) Is mounted separately and together as a  block to the rest of the vehicle


CLOTH

Background
 the first cotton mill at Cromford, Derbyshire, 
UK, is usually considered the first example of a 
modern factory 
 the spinning jenny is considered one of the 
first modern industrial machines
 the level of automation reached in this field of 
manufacturing engineering is not complete.

Today
 High market pressure from  low‐wage countries 
 For years a negative trend  in the production and  market share
 High labour cost intensive  production
 Production of high quality  products,
 Mainly mass produced  garment

Structure of actual 
garment industry
 
 Mainly SMEs, organised in a traditional way
 Outsourcing of high labour of intensive production steps in 
low‐wage countries and related difficulties in logistics
 Less usage of automatic machines in the manufacturing 
process

Garment Flexible Cell
Objective: to develop a multifunctional flexible cell (GAC) for the 3D automatic 
assembly of garments and to demonstrate its effectiveness through physical 
prototyping
Intent and steps
 development of innovative cell robotized resources: •metamorphic grasping 
device•adjustable mould and •reconfigurable mould, •miniaturized sewing head 
, •service robots 
 extended use of simulation to support the development:
 discrete‐events for performance evaluation of production in different design 
scenarios as support to the conceptualization of the Leapfrog ‘holistic 
concept’
 continuous‐time •as support in the design of the new cell resources, •for GAC 
layout definition and •to develop the GAC control system
 integration with technology and tools from whole project
 organization in two levels (Level‐1 and Level‐2) to maximize the industrial 
fallout of the developed technology (short and longer time)

Assembly line simulator

Objective: to develop, tune and validate simulators of the innovative 
garment assembly processes at line and cell levels
 Scientific innovation in the use of Virtual reality object based simulation 
for technology assessment of innovative solutions. Applications:
 to take decisions about alternative layouts and system architectures of the innovative
garment cell and assembly line
 at higher level to validate L-IP garment manufacturing concepts
 as a tool for the dissemination of the Leapfrog concepts
 for layout design and operation management of the different implementation of the
leapfrog concept in the ‘real-world’
 to support the evolutionary improvement of existing facilities
 Three simulators: L‐1 and L‐2 discrete events and L‐1 continuous time
Level 1 layout
 Robotized Sewing
 Automation of Adjustable Mould shaping
 Robotized loading of the Adjustable 
Mould
 Robotized handling of the cut parts
 Use of advanced simulation tools and 
methods for best layout definition and 
design based on virtual testing

Assembly line simulator


 Level‐1 discrete event simulator
 First release (including finalization of the main line manufacturing steps, 
collection of data from end‐users, discussion of interfaces with end‐users, 
development of pre‐ and post‐processing routines for lots management, 
analysis of simulation results)
 Definition of interfaces between the different resources in the GAL
 Start the implementation of the simulator second release
 Next steps
 HMI definition and implementation (maximum friendliness/interactivity)
 Progressive implementation and test of new resources
 Improvement of GAL control systems and management procedures

Level‐2 discrete event simulator(starting)
 Implementation at logical level of line resources as they will be defined
 Integration of resources and collection of process times; tuning of the 
simulator, tests
 Implementation of pre‐ and post‐ processing SW packages for 
management of lots, analysis of simulation results, etc. (first version)
 HMI definition and implementation
 Continuous time simulator(work will start in the next months)
(kinematics models of critical resources; their implementation in the 
simulator; definition and implementation of cell control architecture and 
logics; tests for validation and results evaluation)