Probability Concepts and Standard Normal Distribution

Probability of Events

Calculating Probability

  1. Define the experiment and observation process.
  2. List the sample space (SP).
  3. Assign probabilities to each outcome in the SP.
  4. Identify the outcomes within the event of interest.
  5. Sum the probabilities of those outcomes.

Set Operations

  • Union (A u B): Occurs if either A, B, or both occur. Includes all outcomes in A or B or both.
  • Intersection (A n B): Occurs if both A and B occur. Includes outcomes common to both A and B.
  • Complement (A^c): Occurs if A does not occur. Includes all outcomes not in A.

Rule of Complements:

P(A) + P(A^c) = 1

Probability Rules

  • Mutually Exclusive Events: P(A u B) = P(A) + P(B)
  • Non-Mutually Exclusive Events: P(A u B) = P(A) + P(B) – P(A n B)

Random Variables

  • Discrete: Can take a countable number of values.
  • Continuous: Can take any value within a range.

Probability Distributions

A probability distribution describes the probability of each possible value of a random variable.

Discrete Random Variable:

Represented by a table, graph, or formula.

Continuous Random Variable:

Represented by a smooth curve (probability density function).

Standard Normal Distribution

A normal distribution with a mean (μ) of 0 and a standard deviation (σ) of 1. Denoted by Z.

Z-Scores

A Z-score measures how many standard deviations a data point is from the mean.

Z-Table

Provides cumulative probabilities (area under the curve) for Z-scores.

Using the Z-Table

  • P(Z < z): Find the cumulative probability up to z.
  • P(Z > z): Subtract the table value from 1 to get the area to the right of z.
  • P(|Z| < z): Find the area between -z and z (double the table value for z).
  • P(|Z| > z): Find the area in both tails beyond ±z.

Finding Z-Scores for Given Probabilities

Use the Z-table in reverse to find the Z-score corresponding to a given cumulative probability.

Probabilities Between Two Z-Scores

Subtract the cumulative probability of the smaller Z-score from the cumulative probability of the larger Z-score.

Probabilities Within a Range

For P(|Z| ≤ z), double the cumulative probability for the positive Z-score.

B3GBl5ibV7QvAAAAAElFTkSuQmCC EEAAAQQQQAABBBBAAIEIEyAhjbCA0VwEEEAAAQQQQAABBBBAwCwCJKRmiST9QAABBBBAAAEEEEAAAQQiTCCm7sVbr0y5zmmERYLmIoAAAggggAACCCCAAAJRJmAkpE4jIeVAAAEEEEAAAQQQQAABBBBAILQCMQ4S0tCK8zYEEEAAAQQQQAABBBBAAIFvAoyQ8iEggAACCCCAAAIIIIAAAgj8F4Ev8vR4kQT1nQ0AAAAASUVORK5CYII= QeKabfB59+pygAAAABJRU5ErkJggg== wM+s4CEyU7oWAAAAABJRU5ErkJggg== weLbaM8KWl9iQAAAABJRU5ErkJggg== 4pF+hgfQAAAABJRU5ErkJggg== AAAAAElFTkSuQmCC 4nRyRgWZFFmKNUmOpU+iOxvPQRjar5I84V84t3goBTaor7p702qcpxFaRjUPoUxByRW9XsuBmDyqK144SZP3SeNq+j1ye2uoNPxEE0YcbiICIgIiAiICIgIiAiICIgIiAiICIgIiAi8FAdEgfSkwi42ICIgIiAiICIgIiAiICIgIiAiICIgIiAhURkA0SCsjIv4tIiAiICIgIiAiICIgIiAiICIgIiAiICLwUhAQDdKXArPYiIiAiICIgIiAiICIgIiAiICIgIiAiICIQGUEaJD+H4wYSUDbgAG5AAAAAElFTkSuQmCC oxFYkpSvtagAAAABJRU5ErkJggg== aJxyWREQAREQAREQAREQAREQAREQgWouIAG0mn+AMnwREAEREAEREAEREAEREAERqC4CEkCryycl4xQBERABERABERABERABERCBai4gAbSaf4AyfBEQAREQAREQAREQAREQARGoLgISQKvLJyXjFAEREAEREAEREAEREAEREIFqLvAfMv4i7pHJLT4AAAAASUVORK5CYII= 6AEJCD6DwpfurQkAUkCkgQkCUgSkCQgSUCSgCQBSQKSBP6LEsgLRP8Pz2T4SfknfwQAAAAASUVORK5CYII= vd2DbrogUxUBJ+tyx+p10tHWKkvrQjdIzDYPhbRHGAEjYATmkYAFnvMI2x5lBIyAETACRsAIGAEjYASMgBEoRQIWeJZiq1udjYARMAJGwAgYASNgBIyAETAC80jAAs95hG2PMgJGwAgYASNgBIyAETACRsAIlCIBCzxLsdWtzkbACBgBI2AEjIARMAJGwAgYgXkkYIHnPMK2RxkBI2AEjIARMAJGwAgYASNgBEqRgAWepdjqVmcjYASMgBEwAkbACBgBI2AEjMA8ErDAcx5h26OMgBEwAkbACBgBI2AEjIARMAKlSMACz1JsdauzETACRsAIGAEjYASMgBEwAkZgHglY4DmPsO1RRsAIGAEjYASMgBEwAkbACBiBUiTwX+JxsbzJ6eYOAAAAAElFTkSuQmCC TTn1MurxlLWnnqJeRj2eeu6Uqepl1OMpcyZNUfIqV76rHk+aO+UnJa9yTZnj2ylKOeX67dwp7yrllGvKHClT1PMqceWaMnfKFPW8Sly5psydMkU9rxJXrilzp0xRz6vElWvK3ClT1POqx5Pm1CCCV7pofvwfR0PIg915dWUAAAAASUVORK5CYII= T2WRzYQS+IwKidxnYvW4NcrQ7YayjA7TL2yh9R1NkU2EEGAFGgBFgBBgBRuBfT4AEaQ4Zg9ZkIvOv58MAMAKMACPACDACjAAjwAgwAowAI8AIfCMCcslPs6p2qvhGh2G7ZQQYAUaAEWAEGAFGgBFgBBgBRoARYARkCcg9YIJUlgh7xggwAowAI8AIMAKMACPACDACjAAj8I8QYBHSfwQzOwgjwAgwAowAI8AIMAKMACPACDACjMCHBKiGlKXsfgiFPWcEGAFGgBFgBBgBRoARYAQYAUaAEfj2BP4f96ILsevVtbUAAAAASUVORK5CYII=

Sample Statistics and Parameters

  • Sample Statistic: A numerical measure calculated from a sample.
  • Sampling Distribution: The probability distribution of a sample statistic.
  • Parameter: A numerical measure describing a population.