Proof of Triangle Congruence: SAS Postulate
Posted on Jan 21, 2025 in Mathematics
Theorem 8: Triangle Congruence via SAS Postulate
Statements
- In \( \triangle ABC \leftrightarrow \triangle GET \)
- i) \( BC = WE \)
- ii) \( \angle B = \angle GET \)
- iii) \( BA = GE \)
\( \therefore \triangle ABC \cong \triangle GEF \)
\( \therefore AC = GF \) & \( \angle A = \angle GET \)
But \( DF = A \)
\( \therefore GF = DF \)
\( \therefore \) In \( \triangle DEG \), \( m \angle 1 = m \angle \)
Similarly, in \( \triangle GFD \), \( m \angle 2 = m \angle 4 \)
\( \therefore m \angle 1 + m \angle 2
= m \angle + m \angle 4 \)
\( \therefore m \angle D = m \angle G \)
But \( m \angle G = m \angle A \)
\( \therefore m \angle A = m \angle D \)
\( \therefore \) In \( \triangle ABC \leftrightarrow \triangle DEF \)
- i) \( AB = DE \)
- ii) \( \angle A = \angle D \)
- iii) \( AC = DF \)
\( \therefore \triangle ABC \cong \triangle DEF \)
Reasons
- i) Given
- ii) Construction
- iii) Construction
- SAS Postulate
- By the congruence of triangles
- Given
- Transitive property
- Opposite sides congruent (Theorem 6)
- \( DF = GF \) (Theorem 6)
- Addition property of equation
- \( m \angle 1 + m \angle 2 = m \angle D \)
- Proved in (3) above
- Transitive property
- i) Given
- ii) Proved above
- iii) Given
- SAS Postulate