Proof of Triangle Congruence: SAS Postulate

Theorem 8: Triangle Congruence via SAS Postulate

Statements

  1. In \( \triangle ABC \leftrightarrow \triangle GET \)
  • i) \( BC = WE \)
  • ii) \( \angle B = \angle GET \)
  • iii) \( BA = GE \)
\( \therefore \triangle ABC \cong \triangle GEF \) \( \therefore AC = GF \) & \( \angle A = \angle GET \) But \( DF = A \) \( \therefore GF = DF \) \( \therefore \) In \( \triangle DEG \), \( m \angle 1 = m \angle \) Similarly, in \( \triangle GFD \), \( m \angle 2 = m \angle 4 \) \( \therefore m \angle 1 + m \angle 2 = m \angle + m \angle 4 \) \( \therefore m \angle D = m \angle G \) But \( m \angle G = m \angle A \) \( \therefore m \angle A = m \angle D \) \( \therefore \) In \( \triangle ABC \leftrightarrow \triangle DEF \)
  • i) \( AB = DE \)
  • ii) \( \angle A = \angle D \)
  • iii) \( AC = DF \)
\( \therefore \triangle ABC \cong \triangle DEF \)

Reasons

    • i) Given
    • ii) Construction
    • iii) Construction
  1. SAS Postulate
  2. By the congruence of triangles
  3. Given
  4. Transitive property
  5. Opposite sides congruent (Theorem 6)
  6. \( DF = GF \) (Theorem 6)
  7. Addition property of equation
  8. \( m \angle 1 + m \angle 2 = m \angle D \)
  9. Proved in (3) above
  10. Transitive property
    • i) Given
    • ii) Proved above
    • iii) Given
  11. SAS Postulate