Stable Feedback and State Estimation Techniques

Stable Feedback: General Case

State: x = Ax + Bu,

x Î Rn, u Î R

Control:  u = –Kx with K =[K1

K2

Kn ]1´n

D

+

r

u

+

̇

+

y

+

B

ʃ

C


+

Ax

A

K

ì

Figure 14-1. Closed-loop system state diagram.

D

ïx

= ( ABK )x = Afx

,

ïA

f

= A BK ¬closed – loop matrix

î

the characteristic polynomial for the closed-loop system is

det(sIAf ) = det(sIA + BK ) = 0

Let the Design Specification require closed-loop eigenvalues at

l1,-l2 ,   ,-ln .

\a

c

(s) = (s +l )(s +l

2

)   (s +l

n

) = s n+a

n-1

s n1+  +a

s +a

0

= 0

1

1

Pole-placement design procedure is achieved by setting

det(sIA + BK ) = s n+an1sn1++a1s +a0

92


14.1 Stable Feedback: General Case      93

\Solve for n unknown K1 ,…, Kn . The equations are linear!

K can be computed directly from this formula if and only if (A,B) is controllable.

b

sn1+  + b s + b

n-1

sn-1

1

0

Consider the transfer function Gp (s) =sn+a

n-1

+  + a s + a

1

0

The controllable canonical form is

é

0

1

0

0

ù

é0ù

ê

ú

ê

ú

ê

0

0

1

0

ú

ê0ú

ê

ú

ê

ú

x =

ê

ú

+

ê

ú u

ê

ú

ê

ú

ê

0

0

0

1

ú

ê0ú

ê

ú

ê

ú

ê a

0

a   a

2

a

n-1

ú

ê1ú

ë

1

û

ë

û

y =[b0

b1

bn1] x

The control law is

u = –Kx

\ Closed – loop

Afmatrix is

é

0

1

0

0

ù

ê

ú

ê

0

0

1

0

ú

ê

ú

Af= A BK = ê

ú

ê

ú

ê

0

0

0

1

ú

ê

ú

ê a

0

K

1

K

2

a

2

K

3

a

n-1

K

ú

ë

1

n û

Characteristic polynomialÞ det(sIA+BK)=0

\s n+(an1+ Kn)s n1+  +(a1+ K2)s +(a0+ K1)=0

Since desired characteristic polynomial is

ac (s) = sn+an1sn1+  +a1s+a0= 0

\Ki=ai1 ai1i =1,2,…n

Alternatively, K can be computed according to the Ackermann’s Formula as follows:

Page 93 of 115


94    Linear system: Lecture 14


ì

[

]

é

ù-1

c

ï

êB   AB

A n2 B   A n1B ú

ïK =

0   0

0  1

a

( A)

í

ê

Cx

ú

ï

ë

û

ï

n

n-1

îwhere   ac( A)= A

+a n -1A

+

+a1A +a0I

Example 1: x=

é0

é0ù

ê

ú x + ê

ú u

ê0

ê1ú

ë

û

ë

û

Let the desired characteristic polynomial be

ac (s) = s2+ (l1+l2 )s +l1l2= 0

Based on Ackermann’s formula, need to computeCx

é0

é0

Cx

=[B   AB]= ê

ú

Þ Cx1

= ê

ú

ê1

ê1

ë

û

ë

û

a

(A) = A2

+(l+l

)A+l l

él l

l + l

ù

c

I ==ê

1

2

1

2

ú

12

1   2

ê

0

l l

ú

2

ë

1

û

\K =[0  1][B   AB]1ac( A K =[K1

K2]=[l1l2l1+l2]

Example 2: Let the design specifications require a critically damped system with asettling time of 1 sec., i.e, 4t=1.

xw

=

1

Þ xw

= 4 Þx= 1 (critically damped),w

= 4

n

n

n

t

\ac (s) = (s + 4)(s + 4) = s 2+ 8s +16

\K1=l1l2

=16,

K2=l1+l2=8

If we compute the closed-loop transfer function, we get the figure 14-2.

-1

B

=s 2

1

Also,

T (s)=[1  0][sI A + BK ]

+ 8s +16

as desired!

As a different example, let x= .707, t= .25 \ s = -4 ± j 4 Þa

( s ) = s 2

+ 8s + 32

c

ìK =ll=32

Þ K =[32  8]

\ í

11   2

îK2=l1+l2=

8

Page 94 of 115


14.2 State Estimation: Full-Order Observer  95


.5            1           1.5t

Figure 14-2.System plot for example 2.

14.2  State Estimation: Full-Order Observer

14.2.1 Theorem

ì

+ Bu   x Î R

n

, u Î R

y(t)

ïx = Ax

State

í

y Î R

u(t)

Plant

̇

Estimator

ïy = Cx

x(t)

î

The estimator equation is expressed as

=Fn´n

xˆ+ Hn´1 u + Gn´1  y

Figure 14-3.  Block diagram of combined plant & observer.

xˆ

We need to choose matrices F, G, and H such that xˆ(t) is accurate estimate of x(t). Then in the control system, the estimated states are used to generate the feedback control, i.e. u = –Kxˆ. To do this, the transfer function fromutoxˆimust be equal to the transferfunction from u to xi , i =1,2,…,n, that is

ˆ

X i (s)=X i(s)i =1,2,…n

U i(s)U i(s)

The Laplace Transform of state equations are

ìsX (s)- x(0)= AX (s)+ BU (s), x( 0 ) is unknown

ï

í

ïîY (s)= CX (s), A, B, C, and D known

By neglecting i.c. Þ X (s) = (sIA)1BU (s)

\

X i(s)

can be obtained.

U (s)

The Laplace Transform of estimator is (neglecting i.c.)

ˆ

ˆ

ˆ

+ HU(s)+ GCX (s)

sX (s)= FX (s)+ HU(s)+ GY(s)= FX (s)

Since  Y(s)=CX(s)

ˆ

-1

[HU(s)+ GCX (s)]=(sI F)

-1

[H + GC(sI A)

-1

B]U (s)

\X (s)=(sI F)

Page 95 of 115


96    Linear system: Lecture 14


ˆ

We wantX i(s)= Xi(s)

U (s)U (s)

\(sIA)1B = (sIF)1[H+ GC(sIA)1B]Collecting (sIA)1B terms

[I -(sI F)1 GC](sI A)1 B =(sI F)1 H

Since (sIF)1 (sIF) = I \(sIF)1[sIFGC](sIA)1B = (sIF)1H \[sI F GC](sI A)1 B = H Þ(sI A)1 B =(sI F GC)1 H

This equation is satisfied if we choose H=B and F+GC=A

\F = A GC  and  H = B

G is chosen such that an acceptable transient response or frequency response for the state estimator is achieved.

\xˆ= Axˆ+ Bu + Gy GCxˆ

\ xˆ

= ( AGC)xˆ + Bu + Gyyˆ

= Cxˆ

ìïxˆ= Axˆ+ Bu + G( y yˆ)

í

ïyˆ= Cxˆ

î

Plant

+

̇

x

y

B

ʃ

C

+

u

+

A

+

̇

B

ʃ

C

+

+

observer gain

A

G

-K

Figure 14-4.  Plant and observer diagram.

Let  e(t)=x(t)-xˆ(t)\e=xxˆ

= Ax + Bu -( A GC)xˆ

Bu Gy

Since y=Cx , hencee = Ax -( A GC) xˆ- GC x =( A GC) (x xˆ)

\e =( A GC) e

Page 96 of 115


14.2 State Estimation: Full-Order Observer       97

The error in the estimation of the states is governed by the above dynamic equation with the characteristic polynomial: det(sIA+GC)=0

The gain vector G is chosen to make the dynamics of the estimator faster than the open-loop system dynamics (~ 2 to 4 times faster).

14.2.2  Design of the State Estimator

1)xˆ=( A GC)xˆ+ Bu + Gy , the characteristic polynomial isdet(sIA+GC)=0

2)Let the desired char. poly. be ae (s) , that reflects the desired transient behavior:

ae (s) = sn+an1sn1+  +a1s+a0= 0

3)The gain matrix G is calculated to satisfy det(sIA + GC) =ae (s)

4) Using the transformationxo= To-1xtransforms the system into observable

̇

Canonical form

[][]

{

Now AGC becomes

[]

\det(sIA + GC) =ae (s) = s n+an1sn1+  +a1s+a0

\ gi=ai1 ai1i =1,2,…n

Now using Ackermann’s formula we have [if and only if (A, C) is observable]

ì

é

C

ù-1

é0ù

ï

ê

ú

ê

ú

ï

ê

CA

ú

ê

ú

ïG

= a

(A) ê

ú  ê ú

ï

n´1

e

ê

ú

ê0ú

í

ï

ê

ú

ê

ú

ê

n -1ú

ê

ú

ï

ëCA

û

ë1û

ï

ï

(A)=A

n

+an -1A

n -1

+  +a1A+a0I

îae

Page 97 of 115


98   Linear system: Lecture 14

ì

é0

é0ù

ï

ú x + ê ú u

ïx = ê

Example 3:  í

ê0

ê1ú

ï

ë

û

ë û

0] x

ï

îy =[1

Acontroller was designed for the characteristic polynomial ac (s) = s 2+ 8s + 32 , which yielded a time constant t=.25sec,x=.707

We choose the estimator to be critically damped with a  t=.1 sec.

\ae (s) = (s +10)2= s 2+ 20s +100

é100

20 ù

\ae ( A) = A2+ 20 A +100I = ê

ú

ê 0

100ú

ë

û

é C

ùé10ù

é1   0ù

é

C ù1

é0ù  é

20 ù

Now  Ox= ê

ú

= ê

ú,  Ox1= ê

ú\G =ae

(A) ê

ú

ê ú

= ê

ú

êCAú

ê0

ê0

êCAú

ê1ú

ê100ú

ë

û  ë

û

ë

û

ë

ûëûë

û

\ g1=20

,  g 2= 100

ég1ù


G = ê

ú

êg

ú

ë

2 û

Example 4: Combining previous two examples:K=[32

é

20 ù

8], G

ú

ê100ú

ë

û

The estimator equations

xˆ

= ( AGC)xˆ

+ Bu + Gy =( A GC BK )xˆ+ Gy

Since  u= –Kxˆ , now

é-20

1 ù

AGCBK

ú

ê-

132

-8ú

ë

û

ì

é-20

1 ù

é20ù

ï

x = ê

ú x

+ ê

ú y

ˆ

ˆ

\ Observer/Controller

ï

ê-132

– 8ú

ê100ú

í

ë

û

ë

û

acting as input

ï

ï

ˆ

îu =[-32

– 8] x

acting as output

The T.F. from output u to input y is – G  (s) = –K(sIA + BK + GC)1G

ec

\G

(s) =

1440s + 3200

ec

s 2+28s +292

The transfer function of the controller-estimator is

Gec(s)= K(sI A + BK + GC)1 G

Page 98 of 115


14.2 State Estimation: Full-Order Observer  99


Controller-Estimator

Plant

R=0   +

y


Figure 14-5.Block diagram for example 4.

The characteristic polynomial of the closed-loop system is

1 + Gec (s)Gp (s) = 0

é0

é0ù

Example 5: x= ê

ú x +

ê ú u,y =[1  0] x

ê0

ê1ú

ë

û

ë û

ì

é-20

1 ù

é

20 ù

ïx = ê

ú x + ê

ú y

ï

ˆ

ˆ

The controller-estimator is given by í

ê-132

– 8ú

ê100ú

ë

û

ë

û

ï

=[-32

ï

ˆ

îu

– 8] x

Signal flow graph of the controller-estimator

20

-20

32

R   1

1

+1

1u

-132

100

8

-8

-1

Figure 14-6.Signal flow graph.

Defining

̇

̇

̇

[̇][][][]

y

.511.5t

Figure 14-7.Estimator response.

Page 99 of 115


100    Linear system: Lecture 14


14.2.3  Closed-Loop System Characteristics

The characteristic polynomial with full state feedback is and the characteristic polynomial of a state estimator is

We now derive the characteristic polynomial of the closed-loop system.

First consider

, the plant equations are {̇

Hence,  ̇

̇

The error dynamic equation is

̇

, therefore the closed-loop system is

[

̇

] [ ]

]  [

̇

The characteristic polynomial of the closed-loop system is

[

]

The 2n roots of the closed-loop characteristic polynomial are then the n roots of the pole-placement design plus the n roots of the estimator. This is fortunate, since otherwise the roots from the pole-placement would have been shifted by the addition of the estimator. This is called the separation principle.

Example 6: From the previous examples we have

We have

or equivalently from()

[]

The above characteristic polynomial is obtained.

Page 100 of 115


14.3 Reduced-Order Estimators101


14.3  Reduced-Order Estimators

Estimators developed so far are called full-order estimators since all states of the plant are estimated. However, usually from output measurement some states are directly available. Hence it is not logical to estimate states that are directly measured.

Assume without loss of generality that

Partition x into

[

], where

are the states to be estimated.

̇

Partition also[̇]

[

] [

]  [

]

The equation of the states to be estimated

̇

And the equation of the state that is measured  ̇

where

is

unknown and to be estimated and

and u are known.

To derive the equation of the estimator observer that for the full state estimation

{ ̇

For the reduced order observer we have

ì

x

e

= A  x

e

+ ( A  x  + B u)

ï

ee

e1

1

e

ïunknown

í( x

a   x   b  u  )= A   x

ï

1

11

1

1

1e1e

ï

known

î known

known

unknown

ìx(t xe(t)

replace x with xe

ï

ïA

¬Aee

ï

ï

Comparing we have íBu¬Ae1x+Beu

ï

¬ x1 a11x1 b1u

ïy

ï

ïC

¬ A

î

1e

Making these substitutions for the full-order observer equations yield

[xˆ

= ( AGC)xˆ + Bu + Gy]

= ( AeeGe A1e )xˆe+ Ae1y + Beu+ Ge ( ya11yb1u)

xˆe

Page 101 of 115


102    Linear system: Lecture 14


Thus the error dynamic is e=xexˆeÞe=(AeeGeA1e)e

Thus, the characteristic polynomial of the reduced-order estimator is

ae (s) = det(sIAee+ Ge A1e ) = 0

We then choose

to satisfy this equation where

is chosen to give the estimator desired

dynamics. This can be achieved if and only if ( Aee , Aie ) is observable.

Ackermann’s formula yields

é

A1e

ù-1

é0ù

ê

ú

ê

ú

ê

A  A

ú

ê0ú

G

= a

(A  )ê

1e   ee

ú

ê

ú

e

e

ee

ê

ú

ê

ú

ê

ú

ê

ú

ê

n-2ú

ê

ú

ëA1e Aee

û

ë1

û

The above estimator requires measurement of y . To relax this requirement, define a new variable xˆe1=xˆeGey or xˆe=xˆe1+Gey

Substituting in observer dynamic yields

xˆe1+ Ge y =( Aee Ge A1e)(xˆe1+ Ge y)+ Ae1 y + Beu + Ge( y a11 y b1u)

\xˆe1=( Aee Ge A1e)xˆe1+( Ae1 Ge a11+ Aee Ge Ge A1eGe) y +(Be Geb1)u

The control u is

u = –K1 y Ke xˆe= –K1 y Ke(xˆe1+ Ge y)

Where


u

y

Plant

x

+

Reduced

+

Order

Observer


+


Figure 14-8.Block diagram of the combined plant and reduced order observer.

Page 102 of 115


14.3 Reduced-Order Estimators103


Example 7: {̇[         ]        [ ]the controller designed earlier yielded

As for the estimator of reduced order (1st order), let

From Ackermann’s formula:

̇

̇

The estimated value ofis then

Example 8:If we combine plant equations with the estimator and the control we have

The signal flow graph becomes

1-8u1

-10

-10010

Figure 14-9.System signal flow graph.

The characteristic polynomial is

⏟⏟

Now opening the graph from u we calculate

Page 103 of 115


104    Linear system: Lecture 14


Controller  – estimatorplant

R=0+


Figure 14-10.Closed-loop combined plant and controller estimator.

14.4  Reduced-Order State Estimator: General Case

ìx = Ax + Bu,x Î R n,  u Î R p

Consider ïí

ïy = Cx  , y Î R q

î

Assumption:  C has full rank,

Define:

[ ] , where

arbitrary as long as

P is nonsingular.

Define

[ ]

[

]

[

]

Define the equivalence transformation

̅

̇

̅

{

̅

̅

̅

̅

Partition above system as

̇

̅

̅

̅

̅

̅

[ ̇

]  [

̅

̅

][][]

̅

̅

̅

{

̅

̅

Therefore, only the last (n – q) elements of

̅need to be estimated.

We need only an (n – q)-dimensional state estimator.

Page 104 of 115


14.4 Reduced-Order State Estimator: General Case  105

̇

̅

̅

̅

Using

̅

{

̅

̇

̅

̅

̇

̅

̅

̅

̅

Define ̅

̅

̅

̇

̅

̅

̇

̅

̅

̅

̅

̅

̅

Lemma:

The pair (A, C) or equivalently  ̅

̅ is observable, iff. the pair

̅  ̅

is observable.

Therefore,

a (n – q)-dimensional estimator of

̅ in the form

ˆ

ˆ

= ( A22G × A12 )x2+ G ( yA11yB1u) + ( A21y + B2u)

x2

such that the eigenvalues of

̅

̅

̅

can be arbitrarily assigned by proper choice

of   ̅

To eliminate

ˆ

Gy

̇definez=x2

̇

̅

̅  ̅

̅

̅̅̅̅

̅ ̅

̅

̅ ̅

Define

̅

̂̅

̅

̅

̇

̅

̅

̅

by proper choice of   .

é x ù

é

y

ù

ˆ

Now

ˆ

ê

1

ú

= ê

ú , since

x=

ê

ˆ

ú

ê

ú

ëx2 û

ë Gy + z û


é

y   ù

é I q

ˆ

ê

-1

] ê

ú

x= Px Þ x = P

x= Qx

\ xˆ= Qx =[Q1

Q2

= [Q1

Q2]ê

ê

ú

ê G

ë Gy + zû

ë

ù

úé y ù

ú ê ú

êë z úû

Iú

n q û


which is an estimate of the original vector  x.

y

̅

̅

̅

u

̇

z

̂̅

̅

̅ ̅

+

ʃ

+

+

̅

̅ ̅

Figure 14-11.Block diagram for system with reduced order estimator.

Page 105 of 115


15 Lecture 15

Objectives

1)Tracking Problem

2)Closed-Loop Pole-Zero Assignment

3)General Case Using Phase Variable Canonical Form

15.1  Tracking Problem

ìx = Ax + Bu

ï

ïíu = –Kx + K r r

ï

îïy = x1

r

e

+

u

Plant

y

+



Figure 15-1.State feedback diagram.

It is assumed that K is designed to meet a desired closed-loop characteristics. Problem is to design to satisfy the tracking requirement.

⏟, where a choice foris to defined as

106


15.1 Tracking Problem107


Example 1: System{̇  [

]

[ ]

from lecture 14

Example 2. (Hyperlink)

r

+

e

32

+

y



8

Figure 15-2.State diagram for example 1.

For the general case, if≠, instead,

then we express

since we want the system to be driven by the difference between the input and output.

Comparing with

{

Hence one gain has to be determined from other design criteria.

Page 107 of 115