Stable Feedback and State Estimation Techniques
Stable Feedback: General Case
State: x = Ax + Bu, | x Î Rn, u Î R | |||||||||||
Control: u = –Kx with K =[K1 | K2 | Kn ]1´n | ||||||||||
D | ||||||||||||
+ | ||||||||||||
r | u | + | ̇ | + | y | |||||||
+ | B | ʃ | C | |||||||||
+ | ||||||||||||
Ax | ||||||||||||||||||||
A | ||||||||||||||||||||
K | ||||||||||||||||||||
ì | Figure 14-1. Closed-loop system state diagram. | |||||||||||||||||||
D | ||||||||||||||||||||
ïx | = ( A – BK )x = Afx | , | ||||||||||||||||||
\í | ||||||||||||||||||||
ïA | f | = A – BK ¬closed – loop matrix | ||||||||||||||||||
î | ||||||||||||||||||||
the characteristic polynomial for the closed-loop system is | ||||||||||||||||||||
det(sI – Af ) = det(sI – A + BK ) = 0 | ||||||||||||||||||||
Let the Design Specification require closed-loop eigenvalues at | –l1,-l2 , ,-ln . | |||||||||||||||||||
\a | c | (s) = (s +l )(s +l | 2 | ) (s +l | n | ) = s n+a | n-1 | s n–1+ +a | s +a | 0 | = 0 | |||||||||
1 | 1 |
Pole-placement design procedure is achieved by setting
det(sI – A + BK ) = s n+an–1sn–1++a1s +a0
92
14.1 Stable Feedback: General Case 93
\Solve for n unknown K1 ,…, Kn . The equations are linear!
K can be computed directly from this formula if and only if (A,B) is controllable.
b | sn–1+ + b s + b | |||||||||||||||||||||
n-1 | sn-1 | 1 | 0 | |||||||||||||||||||
Consider the transfer function Gp (s) =sn+a | n-1 | + + a s + a | ||||||||||||||||||||
1 | 0 | |||||||||||||||||||||
The controllable canonical form is | ||||||||||||||||||||||
é | 0 | 1 | 0 | 0 | ù | é0ù | ||||||||||||||||
ê | ú | ê | ú | |||||||||||||||||||
ê | 0 | 0 | 1 | 0 | ú | ê0ú | ||||||||||||||||
ê | ú | ê | ú | |||||||||||||||||||
x = | ê | ú | + | ê | ú u | |||||||||||||||||
ê | ú | ê | ú | |||||||||||||||||||
ê | 0 | 0 | 0 | 1 | ú | ê0ú | ||||||||||||||||
ê | ú | ê | ú | |||||||||||||||||||
ê– a | 0 | – a – a | 2 | – a | n-1 | ú | ê1ú | |||||||||||||||
ë | 1 | û | ë | û | ||||||||||||||||||
y =[b0 | b1 | bn–1] x | ||||||||||||||||||||
The control law is | u = –Kx | |||||||||||||||||||||
\ Closed – loop | Afmatrix is | |||||||||||||||||||||
é | 0 | 1 | 0 | 0 | ù | |||||||||||||||||
ê | ú | |||||||||||||||||||||
ê | 0 | 0 | 1 | 0 | ú | |||||||||||||||||
ê | ú | |||||||||||||||||||||
Af= A – BK = ê | ú | |||||||||||||||||||||
ê | ú | |||||||||||||||||||||
ê | 0 | 0 | 0 | 1 | ú | |||||||||||||||||
ê | ú | |||||||||||||||||||||
ê– a | 0 | – K | 1 | – a – K | 2 | – a | 2 | – K | 3 | – a | n-1 | – K | ú | |||||||||
ë | 1 | n û |
Characteristic polynomialÞ det(sI–A+BK)=0
\s n+(an–1+ Kn)s n–1+ +(a1+ K2)s +(a0+ K1)=0
Since desired characteristic polynomial is
ac (s) = sn+an–1sn–1+ +a1s+a0= 0
\Ki=ai–1– ai–1i =1,2,…n
Alternatively, K can be computed according to the Ackermann’s Formula as follows:
Page 93 of 115
94 Linear system: Lecture 14
ì | [ | ] | é | ù-1 | c | |||||||||
ï | êB AB | A n–2 B A n–1B ú | ||||||||||||
ïK = | 0 0 | 0 1 | a | ( A) | ||||||||||
í | ê | Cx | ú | |||||||||||
ï | ë | û | ||||||||||||
ï | n | n-1 | ||||||||||||
îwhere ac( A)= A | +a n -1A | + | +a1A +a0I | |||||||||||
Example 1: x= | é0 | 1ù | é0ù | |||||||||||
ê | ú x + ê | ú u | ||||||||||||
ê0 | 0ú | ê1ú | ||||||||||||
ë | û | ë | û |
Let the desired characteristic polynomial be
ac (s) = s2+ (l1+l2 )s +l1l2= 0
Based on Ackermann’s formula, need to computeCx
é0 | 1ù | é0 | 1ù | ||||||||||||||
Cx | =[B AB]= ê | ú | Þ Cx–1 | = ê | ú | ||||||||||||
ê1 | 0ú | ê1 | 0ú | ||||||||||||||
ë | û | ë | û | ||||||||||||||
a | (A) = A2 | +(l+l | )A+l l | él l | l + l | ù | |||||||||||
c | I ==ê | 1 | 2 | 1 | 2 | ú | |||||||||||
12 | 1 2 | ê | 0 | l l | ú | ||||||||||||
2 | |||||||||||||||||
ë | 1 | û | |||||||||||||||
\K =[0 1][B AB]–1ac( A)Þ K =[K1 | K2]=[l1l2l1+l2] | ||||||||||||||||
Example 2: Let the design specifications require a critically damped system with asettling time of 1 sec., i.e, 4t=1.
xw | = | 1 | Þ xw | = 4 Þx= 1 (critically damped),w | = 4 | ||||
n | n | n | |||||||
t | |||||||||
\ac (s) = (s + 4)(s + 4) = s 2+ 8s +16 | |||||||||
\K1=l1l2 | =16, | K2=l1+l2=8 | |||||||
If we compute the closed-loop transfer function, we get the figure 14-2.
-1 | B | =s 2 | 1 | ||||||
Also, | T (s)=[1 0][sI – A + BK ] | + 8s +16 | as desired! | ||||||
As a different example, let x= .707, t= .25 \ s = -4 ± j 4 Þa | ( s ) = s 2 | + 8s + 32 | |||||||
c | |||||||||
ìK =ll=32 | Þ K =[32 8] | ||||||||
\ í | 11 2 | ||||||||
îK2=l1+l2= | 8 |
Page 94 of 115
14.2 State Estimation: Full-Order Observer 95
.5 1 1.5t
Figure 14-2.System plot for example 2.
14.2 State Estimation: Full-Order Observer
14.2.1 Theorem
ì | + Bu x Î R | n | , u Î R | y(t) | |||
ïx = Ax | State | ||||||
í | y Î R | u(t) | Plant | ̇ | |||
Estimator | |||||||
ïy = Cx | x(t) | ||||||
î |
The estimator equation is expressed as
=Fn´n | xˆ+ Hn´1 u + Gn´1 y | Figure 14-3. Block diagram of combined plant & observer. | |
xˆ |
We need to choose matrices F, G, and H such that xˆ(t) is accurate estimate of x(t). Then in the control system, the estimated states are used to generate the feedback control, i.e. u = –Kxˆ. To do this, the transfer function fromutoxˆimust be equal to the transferfunction from u to xi , i =1,2,…,n, that is
ˆ
X i (s)=X i(s)i =1,2,…n
U i(s)U i(s)
The Laplace Transform of state equations are
ìsX (s)- x(0)= AX (s)+ BU (s), x( 0 ) is unknown
ï
í
ïîY (s)= CX (s), A, B, C, and D known
By neglecting i.c. Þ X (s) = (sI – A)–1BU (s)
\ | X i(s) | can be obtained. | |
U (s) | |||
The Laplace Transform of estimator is (neglecting i.c.)
ˆ | ˆ | ˆ | + HU(s)+ GCX (s) | ||||
sX (s)= FX (s)+ HU(s)+ GY(s)= FX (s) | |||||||
Since Y(s)=CX(s) | |||||||
ˆ | -1 | [HU(s)+ GCX (s)]=(sI – F) | -1 | [H + GC(sI – A) | -1 | B]U (s) | |
\X (s)=(sI – F) |
Page 95 of 115
96 Linear system: Lecture 14
ˆ
We wantX i(s)= Xi(s)
U (s)U (s)
\(sI – A)–1B = (sI – F)–1[H+ GC(sI – A)–1B]Collecting (sI – A)–1B terms
[I -(sI – F)–1 GC](sI – A)–1 B =(sI – F)–1 H
Since (sI – F)–1 (sI – F) = I \(sI – F)–1[sI– F – GC](sI – A)–1B = (sI – F)–1H \[sI – F – GC](sI – A)–1 B = H Þ(sI – A)–1 B =(sI – F – GC)–1 H
This equation is satisfied if we choose H=B and F+GC=A
\F = A – GC and H = B
G is chosen such that an acceptable transient response or frequency response for the state estimator is achieved.
\xˆ= Axˆ+ Bu + Gy – GCxˆ
\ xˆ | = ( A – GC)xˆ + Bu + Gy, yˆ | = Cxˆ |
ìïxˆ= Axˆ+ Bu + G( y – yˆ)
í
ïyˆ= Cxˆ
î
Plant
+ | ̇ | x | y | ||||||||||||||
B | ʃ | C | |||||||||||||||
+ | |||||||||||||||||
u | + | ||||||||||||||||
A | |||||||||||||||||
+ | ̇ | ||||||||||||||||
B | ʃ | C | |||||||||||||||
+ | + | ||||||||||||||||
observer gain | |||||||||||||||||
A | |||||||||||||||||
G | |||||||||||||||||
-K | |||||||||||||||||
Figure 14-4. Plant and observer diagram. | |||||||||||||||||
Let e(t)=x(t)-xˆ(t)\e=x–xˆ | = Ax + Bu -( A – GC)xˆ | – Bu – Gy | |||||||||||||||
Since y=Cx , hencee = Ax -( A – GC) xˆ- GC x =( A – GC) (x – xˆ)
\e =( A – GC) e
Page 96 of 115
14.2 State Estimation: Full-Order Observer 97
The error in the estimation of the states is governed by the above dynamic equation with the characteristic polynomial: det(sI–A+GC)=0
The gain vector G is chosen to make the dynamics of the estimator faster than the open-loop system dynamics (~ 2 to 4 times faster).
14.2.2 Design of the State Estimator
1)xˆ=( A – GC)xˆ+ Bu + Gy , the characteristic polynomial isdet(sI–A+GC)=0
2)Let the desired char. poly. be ae (s) , that reflects the desired transient behavior:
ae (s) = sn+an–1sn–1+ +a1s+a0= 0
3)The gain matrix G is calculated to satisfy det(sI – A + GC) =ae (s)
4) Using the transformationxo= To-1xtransforms the system into observable
̇
Canonical form
[][]
{
Now A – GC becomes
[]
\det(sI – A + GC) =ae (s) = s n+an–1sn–1+ +a1s+a0
\ gi=ai–1– ai–1i =1,2,…n
Now using Ackermann’s formula we have [if and only if (A, C) is observable]
ì | é | C | ù-1 | é0ù | ||||||||
ï | ê | ú | ê | ú | ||||||||
ï | ê | CA | ú | ê | ú | |||||||
ïG | = a | (A) ê | ú ê ú | |||||||||
ï | n´1 | e | ê | ú | ê0ú | |||||||
í | ||||||||||||
ï | ê | ú | ê | ú | ||||||||
ê | n -1ú | ê | ú | |||||||||
ï | ëCA | û | ë1û | |||||||||
ï | ||||||||||||
ï | (A)=A | n | +an -1A | n -1 | + +a1A+a0I | |||||||
îae |
Page 97 of 115
98 Linear system: Lecture 14
ì | é0 | 1ù | é0ù | |
ï | ú x + ê ú u | |||
ïx = ê | ||||
Example 3: í | ê0 | 0ú | ê1ú | |
ï | ë | û | ë û | |
0] x | ||||
ï | ||||
îy =[1 |
Acontroller was designed for the characteristic polynomial ac (s) = s 2+ 8s + 32 , which yielded a time constant t=.25sec,x=.707
We choose the estimator to be critically damped with a t=.1 sec.
\ae (s) = (s +10)2= s 2+ 20s +100
é100 | 20 ù | ||||||||||||||||
\ae ( A) = A2+ 20 A +100I = ê | ú | ||||||||||||||||
ê 0 | 100ú | ||||||||||||||||
ë | û | ||||||||||||||||
é C | ùé10ù | é1 0ù | é | C ù–1 | é0ù é | 20 ù | |||||||||||
Now Ox= ê | ú | = ê | ú, Ox–1= ê | ú\G =ae | (A) ê | ú | ê ú | = ê | ú | ||||||||
êCAú | ê0 | 1ú | ê0 | 1ú | êCAú | ê1ú | ê100ú | ||||||||||
ë | û ë | û | ë | û | ë | ûëûë | û | ||||||||||
\ g1=20 | , g 2= 100 | ég1ù | |||||||||||||||
| G = ê | ú | |||||||||||||||
êg | ú | ||||||||||||||||
ë | 2 û | ||||||||||||||||
Example 4: Combining previous two examples:K=[32 | é | 20 ù | |||||||||||||||
8], G=ê | ú | ||||||||||||||||
ê100ú | |||||||||||||||||
ë | û | ||||||||||||||||
The estimator equations | xˆ | = ( A – GC)xˆ | + Bu + Gy =( A – GC – BK )xˆ+ Gy | ||||||||||||||
Since u= –Kxˆ , now | é-20 | 1 ù | |||||||||||||||
A–GC–BK =ê | ú | ||||||||||||||||
ê- | 132 | -8ú | |||||||||||||||
ë | û | ||||||||||||||||
ì | é-20 | 1 ù | é20ù | ||||||||||||||
ï | x = ê | ú x | + ê | ú y | |||||||||||||
ˆ | ˆ | ||||||||||||||||
\ Observer/Controller | ï | ê-132 | – 8ú | ê100ú | |||||||||||||
í | ë | û | ë | û | acting as input | ||||||||||||
ï | |||||||||||||||||
ï | ˆ | ||||||||||||||||
îu =[-32 | – 8] x | ||||||||||||||||
acting as output | |||||||||||||||||
The T.F. from output u to input y is – G (s) = –K(sI – A + BK + GC)–1G | |||||||||||||||||
ec | |||||||||||||||||
\G | (s) = | 1440s + 3200 | |||||||||||||||
ec | s 2+28s +292 | ||||||||||||||||
The transfer function of the controller-estimator is
Gec(s)= K(sI – A + BK + GC)–1 G
Page 98 of 115
14.2 State Estimation: Full-Order Observer 99
Controller-Estimator | Plant | |||
R=0 + | y | |||
| ||||
Figure 14-5.Block diagram for example 4.
The characteristic polynomial of the closed-loop system is
1 + Gec (s)Gp (s) = 0 | |||
é0 | 1ù | é0ù | |
Example 5: x= ê | ú x + | ê ú u,y =[1 0] x | |
ê0 | 0ú | ê1ú | |
ë | û | ë û |
ì | é-20 | 1 ù | é | 20 ù | ||||||
ïx = ê | ú x + ê | ú y | ||||||||
ï | ˆ | ˆ | ||||||||
The controller-estimator is given by í | ê-132 | – 8ú | ê100ú | |||||||
ë | û | ë | û | |||||||
ï | =[-32 | |||||||||
ï | ˆ | |||||||||
îu | – 8] x | |||||||||
Signal flow graph of the controller-estimator | ||||||||||
20 | -20 | 32 | ||||||||
R 1 | 1 | +1 | 1u | |||||||
-132 | ||||||||||
100 | 8 | |||||||||
-8 | -1 | |||||||||
Figure 14-6.Signal flow graph.
Defining
̇
̇
̇
[̇][][][]
y
≠
.511.5t
Figure 14-7.Estimator response.
Page 99 of 115
100 Linear system: Lecture 14
14.2.3 Closed-Loop System Characteristics
The characteristic polynomial with full state feedback is and the characteristic polynomial of a state estimator is
We now derive the characteristic polynomial of the closed-loop system.
First consider | , the plant equations are {̇ | ||
Hence, ̇ | ̇ | ||
The error dynamic equation is | ̇ | , therefore the closed-loop system is | |
[ | ̇ | ] [ ] | |
] [ | |||
̇ | |||
The characteristic polynomial of the closed-loop system is | |||
[ | ] |
The 2n roots of the closed-loop characteristic polynomial are then the n roots of the pole-placement design plus the n roots of the estimator. This is fortunate, since otherwise the roots from the pole-placement would have been shifted by the addition of the estimator. This is called the separation principle.
Example 6: From the previous examples we have
We have
or equivalently from()
[]
The above characteristic polynomial is obtained.
Page 100 of 115
14.3 Reduced-Order Estimators101
14.3 Reduced-Order Estimators
Estimators developed so far are called full-order estimators since all states of the plant are estimated. However, usually from output measurement some states are directly available. Hence it is not logical to estimate states that are directly measured.
Assume without loss of generality that
Partition x into | [ | ], where | are the states to be estimated. | ||||||||
̇ | |||||||||||
Partition also[̇] | [ | ] [ | ] [ | ] | |||||||
The equation of the states to be estimated | ̇ | ||||||||||
And the equation of the state that is measured ̇ | where | is | |||||||||
unknown and to be estimated and | and u are known. | ||||||||||
To derive the equation of the estimator observer that for the full state estimation | |||||||||||
{ ̇ | |||||||||||
For the reduced order observer we have | |||||||||||
ì | x | e | = A x | e | + ( A x + B u) | ||||||
ï | ee | e1 | 1 | e | |||||||
ïunknown | |||||||||||
í( x | – a x – b u )= A x | ||||||||||
ï | 1 | 11 | 1 | 1 | 1e1e | ||||||
ï | known | ||||||||||
î known | known | unknown | |||||||||
ìx(t)¬ xe(t) | replace x with xe | ||||||||||
ï | |||||||||||
ïA | ¬Aee | ||||||||||
ï | |||||||||||
ï | |||||||||||
Comparing we have íBu¬Ae1x+Beu | |||||||||||
ï | ¬ x1– a11x1– b1u | ||||||||||
ïy | |||||||||||
ï | |||||||||||
ïC | ¬ A | ||||||||||
î | 1e | ||||||||||
Making these substitutions for the full-order observer equations yield | |||||||||||
[xˆ | = ( A – GC)xˆ + Bu + Gy] | ||||||||||
= ( Aee– Ge A1e )xˆe+ Ae1y + Beu+ Ge ( y – a11y – b1u) | |||||||||||
xˆe |
Page 101 of 115
102 Linear system: Lecture 14
Thus the error dynamic is e=xe–xˆeÞe=(Aee–GeA1e)e
Thus, the characteristic polynomial of the reduced-order estimator is
ae (s) = det(sI – Aee+ Ge A1e ) = 0
We then choose | to satisfy this equation where | is chosen to give the estimator desired | ||||||||
dynamics. This can be achieved if and only if ( Aee , Aie ) is observable. | ||||||||||
Ackermann’s formula yields | ||||||||||
é | A1e | ù-1 | é0ù | |||||||
ê | ú | ê | ú | |||||||
ê | A A | ú | ê0ú | |||||||
G | = a | (A )ê | 1e ee | ú | ê | ú | ||||
e | e | ee | ê | ú | ê | ú | ||||
ê | ú | ê | ú | |||||||
ê | n-2ú | ê | ú | |||||||
ëA1e Aee | û | ë1 | û |
The above estimator requires measurement of y . To relax this requirement, define a new variable xˆe1=xˆe–Gey or xˆe=xˆe1+Gey
Substituting in observer dynamic yields
xˆe1+ Ge y =( Aee– Ge A1e)(xˆe1+ Ge y)+ Ae1 y + Beu + Ge( y – a11 y – b1u)
\xˆe1=( Aee– Ge A1e)xˆe1+( Ae1– Ge a11+ Aee Ge– Ge A1eGe) y +(Be– Geb1)u
The control u is
u = –K1 y – Ke xˆe= –K1 y – Ke(xˆe1+ Ge y)
Where | , |
| ||||||||
u | y | |||||||||
Plant | ||||||||||
x | ||||||||||
+ | Reduced | |||||||||
+ | Order | |||||||||
Observer | ||||||||||
| + | |||||||||
Figure 14-8.Block diagram of the combined plant and reduced order observer.
Page 102 of 115
14.3 Reduced-Order Estimators103
Example 7: {̇[ ] [ ]the controller designed earlier yielded
As for the estimator of reduced order (1st order), let
From Ackermann’s formula:
̇
̇
The estimated value ofis then
Example 8:If we combine plant equations with the estimator and the control we have
The signal flow graph becomes
1-8u1
-10
-10010
Figure 14-9.System signal flow graph.
The characteristic polynomial is
⏟⏟
Now opening the graph from u we calculate
Page 103 of 115
104 Linear system: Lecture 14
Controller – estimatorplant
R=0+
Figure 14-10.Closed-loop combined plant and controller estimator.
√
14.4 Reduced-Order State Estimator: General Case
ìx = Ax + Bu,x Î R n, u Î R p
Consider ïí
ïy = Cx , y Î R q
î
Assumption: C has full rank,
Define: | [ ] , where | arbitrary as long as | P is nonsingular. | |||||
Define | ||||||||
[ ] | [ | ] | [ | ] | ||||
Define the equivalence transformation | ̅ | |||||||
̇ | ̅ | |||||||
{ | ̅ | |||||||
̅ | ̅ | ̅ | ||||||
Partition above system as | ||||||||
̇ | ̅ | ̅ | ̅ | ̅ | ||||
̅ | ||||||||
[ ̇ | ] [ | ̅ | ̅ | ][][] | ||||
̅ | ̅ | ̅ | ||||||
{ | ̅ | ̅ | ||||||
Therefore, only the last (n – q) elements of | ̅need to be estimated. | |||||||
We need only an (n – q)-dimensional state estimator. | ||||||||
Page 104 of 115 |
14.4 Reduced-Order State Estimator: General Case 105 | |||||||||||||||||
̇ | ̅ | ̅ | ̅ | ||||||||||||||
Using | ̅ | { | ̅ | ̇ | ̅ | ̅ | |||||||||||
̇ | ̅ | ̅ | ̅ | ||||||||||||||
̅ | |||||||||||||||||
Define ̅ | ̅ | ̅ | ̇ | ̅ | ̅ | ||||||||||||
̇ | ̅ | ̅ | ̅ | ̅ | ̅ | ||||||||||||
̅ | |||||||||||||||||
Lemma: | |||||||||||||||||
The pair (A, C) or equivalently ̅ | ̅ is observable, iff. the pair | ̅ ̅ | is observable. | ||||||||||||||
Therefore, | a (n – q)-dimensional estimator of | ̅ in the form | |||||||||||||||
ˆ | ˆ | ||||||||||||||||
= ( A22– G × A12 )x2+ G ( y – A11y – B1u) + ( A21y + B2u) | |||||||||||||||||
x2 | |||||||||||||||||
such that the eigenvalues of | ̅ | ̅ | ̅ | can be arbitrarily assigned by proper choice | |||||||||||||
of ̅ | |||||||||||||||||
To eliminate | ˆ | – Gy | |||||||||||||||
̇definez=x2 | |||||||||||||||||
̇ | ̅ | ̅ ̅ | ̅ | ̅̅̅̅ | ̅ ̅ | ̅ | ̅ ̅ | ||||||||||
Define | ̅ | ̂̅ | ̅ | ̅ | ̇ | ̅ | ̅ | ||||||||||
̅ | |||||||||||||||||
by proper choice of . | |||||||||||||||||
é x ù | é | y | ù | ||||||||||||||
ˆ | |||||||||||||||||
Now | ˆ | ê | 1 | ú | = ê | ú , since | |||||||||||
x= | |||||||||||||||||
ê | ˆ | ú | ê | ú | |||||||||||||
ëx2 û | ë Gy + z û |
é | y ù | é I q | |||||||||||||
ˆ | ê | ||||||||||||||
-1 | ] ê | ú | |||||||||||||
x= Px Þ x = P | x= Qx | \ xˆ= Qx =[Q1 | Q2 | = [Q1 | Q2]ê | ||||||||||
ê | ú | ||||||||||||||
ê G | |||||||||||||||
ë Gy + zû | |||||||||||||||
ë |
0 ù
úé y ù
ú ê ú
êë z úû
Iú
n –q û
which is an estimate of the original vector x.
y
̅ | ̅ | ̅ | ||||||||||||
u | ̇ | z | ̂̅ | |||||||||||
̅ | ̅ ̅ | + | ʃ | + | + | |||||||||
̅ | ̅ ̅ | |||||||||||||
Figure 14-11.Block diagram for system with reduced order estimator.
Page 105 of 115
15 Lecture 15
Objectives
1)Tracking Problem
2)Closed-Loop Pole-Zero Assignment
3)General Case Using Phase Variable Canonical Form
15.1 Tracking Problem
ìx = Ax + Bu
ï
ïíu = –Kx + K r r
ï
îïy = x1
r | e | + | u | Plant | y |
+ | |||||
| |||||
|
Figure 15-1.State feedback diagram.
It is assumed that K is designed to meet a desired closed-loop characteristics. Problem is to design to satisfy the tracking requirement.
⏟, where a choice foris to defined as
106
15.1 Tracking Problem107
Example 1: System{̇ [ | ] | [ ] | from lecture 14 | |||
Example 2. (Hyperlink) | ||||||
r | + | e | 32 | + | y |
|
| ||||
8 |
Figure 15-2.State diagram for example 1.
For the general case, if≠, instead,
then we express
since we want the system to be driven by the difference between the input and output.
Comparing with
{
Hence one gain has to be determined from other design criteria.
Page 107 of 115